Compare commits

..

No commits in common. "e452e282f441fcf99996919f09a6509851587cd8" and "4982d2701907dad67cceff8c82ef34ecac149708" have entirely different histories.

13 changed files with 15445 additions and 15604 deletions

View File

@ -23,15 +23,6 @@
#define DISTRHO_PLUGIN_NAME "peacock-8" #define DISTRHO_PLUGIN_NAME "peacock-8"
#define DISTRHO_PLUGIN_URI "https://gjcp.net/plugins/peacock" #define DISTRHO_PLUGIN_URI "https://gjcp.net/plugins/peacock"
#define DISTRHO_PLUGIN_CLAP_ID "net.gjcp.peacock"
#define DISTRHO_PLUGIN_CLAP_FEATURES "instrument","synthesizer","stereo"
#define DISTRHO_PLUGIN_BRAND_ID GJCP
#define DISTRHO_PLUGIN_UNIQUE_ID Pfau
#define DISTRHO_PLUGIN_LV2_CATEGORY "lv2:InstrumentPlugin"
#define DISTRHO_PLUGIN_VST_CATEGORY "Fx|Instrument"
#define DISTRHO_PLUGIN_NUM_INPUTS 0 #define DISTRHO_PLUGIN_NUM_INPUTS 0
#define DISTRHO_PLUGIN_NUM_OUTPUTS 2 #define DISTRHO_PLUGIN_NUM_OUTPUTS 2
#define DISTRHO_PLUGIN_IS_SYNTH 1 #define DISTRHO_PLUGIN_IS_SYNTH 1
@ -72,7 +63,7 @@
pSustain, pSustain,
pRelease, pRelease,
pChorusMode, pChorus,
parameterCount parameterCount
}; };

View File

@ -34,8 +34,7 @@ include ../dpf/Makefile.plugins.mk
SKIP_NATIVE_AUDIO_FALLBACK = true SKIP_NATIVE_AUDIO_FALLBACK = true
# omitting LV2 for the moment until I figure out cross-compiling TARGETS += jack lv2_sep
TARGETS += jack vst2 vst3 clap
all: $(TARGETS) all: $(TARGETS)

File diff suppressed because it is too large Load Diff

View File

@ -43,12 +43,7 @@ Assigner::Assigner() {
} }
void Assigner::handleMidi(MidiEvent* ev) { void Assigner::handleMidi(MidiEvent* ev) {
uint8_t status = ev->data[0]; uint8_t status = ev->data[0];
//printf("called with event %04x (%02x): %02x %02x %02x\n", ev->frame, ev->size, ev->data[0], ev->data[1], ev->data[2]);
if (ev->size > 3) return; // sysex bug
switch (status & 0xf0) { switch (status & 0xf0) {
case 0x80: case 0x80:
noteOff(ev->data[1]); noteOff(ev->data[1]);
@ -115,10 +110,6 @@ void Assigner::noteOn(uint8_t note) {
return; return;
} }
if ((noteTbl[voiceTbl[0]] & 0x80)) {
m->lfoRampOn();
}
// loop around the voices // loop around the voices
for (i = NUM_VOICES - 1; i >= 0; i--) { for (i = NUM_VOICES - 1; i >= 0; i--) {
v = voiceTbl[i]; v = voiceTbl[i];
@ -146,6 +137,6 @@ void Assigner::noteOn(uint8_t note) {
// printf("at end, l=%d e=%d\n", l,e); // printf("at end, l=%d e=%d\n", l,e);
noteTbl[v] = note; noteTbl[v] = note;
d_debug("send voice on %3d to voice %d", note, i); d_debug("send voice on %3d to voice %d", note, v);
voice[v].on(note); voice[v].on(note);
} }

View File

@ -27,7 +27,6 @@ class Assigner {
Assigner(); Assigner();
void handleMidi(MidiEvent* ev); void handleMidi(MidiEvent* ev);
Voice* voice; Voice* voice;
Module *m;
private: private:
void noteOn(uint8_t note); // incoming note on (or off, if velocity = 0) void noteOn(uint8_t note); // incoming note on (or off, if velocity = 0)

View File

@ -19,8 +19,8 @@
#include "chorus.hpp" #include "chorus.hpp"
#include <math.h> #include <math.h>
#include <stdio.h>
#include <string.h> #include <string.h>
Chorus::Chorus() { Chorus::Chorus() {
lpfOut1 = new float[bufferSize]; lpfOut1 = new float[bufferSize];
lpfOut2 = new float[bufferSize]; lpfOut2 = new float[bufferSize];
@ -29,8 +29,7 @@ Chorus::Chorus() {
lfoPhase = 1; lfoPhase = 1;
lfoSpeed = 6.283 * 10.7 / sampleRate; // plainly silly value to show if it hasn't been set lfoSpeed = 6.283 * 10.7 / sampleRate; // plainly silly value to show if it hasn't been set
gainTC = 1 - exp(-6.283 * 10 / sampleRate); // 1/10th of a second declick gainTC = 1 - exp(-6.283 * 10 / sampleRate);
bbdTC = 1 - exp(-6.283 * 30 / sampleRate); // hpf into BBD at 159Hz
// not quite Butterworth but you'd never hear the difference // not quite Butterworth but you'd never hear the difference
// these are calculated from the real-world component values // these are calculated from the real-world component values
@ -59,7 +58,7 @@ void Chorus::run(float* input, float** outputs, uint32_t frames) {
// run highpass / bass boost and stereo chorus effect for one full block // run highpass / bass boost and stereo chorus effect for one full block
float s0 = 0, s1 = 0; float s0 = 0, s1 = 0;
float dly1, frac, flt; float lfoMod, dly1, frac, flt;
uint16_t tap, delay; uint16_t tap, delay;
for (uint32_t i = 0; i < frames; i++) { for (uint32_t i = 0; i < frames; i++) {
@ -76,14 +75,11 @@ void Chorus::run(float* input, float** outputs, uint32_t frames) {
hpDelay = flt; hpDelay = flt;
input[i] += (flt * hpGain); input[i] += (flt * hpGain);
flt = ((input[i] - bbdRC) * bbdTC) + bbdRC; ram[delayptr] = input[i];
bbdRC = flt;
ram[delayptr] = input[i] - flt;
// delays in milliseconds // delays in milliseconds
#define BASE 0.0035 #define BASE 0.005
#define AMT 0.002 #define AMT 0.00175
dly1 = (BASE + (AMT * lfoPhase)) * sampleRate; dly1 = (BASE + (AMT * lfoPhase)) * sampleRate;
delay = (int)dly1; delay = (int)dly1;
@ -106,6 +102,7 @@ void Chorus::run(float* input, float** outputs, uint32_t frames) {
delayptr++; delayptr++;
delayptr &= 0x3ff; delayptr &= 0x3ff;
} }
postFilter1l->runSVF(lpfOut1, lpfOut1, frames); postFilter1l->runSVF(lpfOut1, lpfOut1, frames);
postFilter2l->runSVF(lpfOut1, lpfOut1, frames); postFilter2l->runSVF(lpfOut1, lpfOut1, frames);
postFilter1r->runSVF(lpfOut2, lpfOut2, frames); postFilter1r->runSVF(lpfOut2, lpfOut2, frames);
@ -114,6 +111,7 @@ void Chorus::run(float* input, float** outputs, uint32_t frames) {
for (uint32_t i = 0; i < frames; i++) { for (uint32_t i = 0; i < frames; i++) {
float y = input[i]; float y = input[i];
gainRC = (gain - gainRC) * gainTC + gainRC; gainRC = (gain - gainRC) * gainTC + gainRC;
outputs[0][i] = y + (gainRC * lpfOut1[i]); outputs[0][i] = y + (gainRC * lpfOut1[i]);
outputs[1][i] = y + (gainRC * lpfOut2[i]); outputs[1][i] = y + (gainRC * lpfOut2[i]);
} }
@ -149,16 +147,15 @@ void Chorus::setChorus(uint8_t mode) {
// switch chorus mode // switch chorus mode
switch (mode) { switch (mode) {
case 0x60: case 0x60:
case 0x20:
gain = 0; gain = 0;
break; break;
case 0x40: case 0x40:
gain = 1.2; gain = 1.2;
lfoSpeed = 6.283 * 0.525 / sampleRate / 2; lfoSpeed = 6.283 * 0.5 / sampleRate;
break; break;
case 0x00: case 0x00:
gain = 1.2; gain = 1.2;
lfoSpeed = 6.283 * 0.85 / sampleRate / 2; lfoSpeed = 6.283 * 0.9 / sampleRate;
break; break;
} }
} }

View File

@ -46,8 +46,6 @@ class Chorus {
float gainRC = 0; float gainRC = 0;
float gainTC = 0; float gainTC = 0;
float bbdRC=0, bbdTC=0;
uint16_t delayptr = 0; uint16_t delayptr = 0;

View File

@ -32,7 +32,6 @@ Module::Module() {
vcaBuf = new float[bufferSize]; vcaBuf = new float[bufferSize];
subBuf = new float[bufferSize]; subBuf = new float[bufferSize];
pwmBuf = new float[bufferSize]; pwmBuf = new float[bufferSize];
noiseBuf = new float[bufferSize];
} }
Module::~Module() { Module::~Module() {
@ -41,117 +40,59 @@ Module::~Module() {
delete subBuf; delete subBuf;
delete pwmBuf; delete pwmBuf;
} }
void Module::genNoise() {
for (uint32_t i = 0; i < bufferSize; i++) {
noiseRNG *= 0x8088405;
noiseRNG++;
noiseBuf[i] = 2 - (noiseRNG & 0xffff) / 16384.0f;
}
}
void Module::lfoRampOn() {
lfoDelayState = 1;
lfoDelayTimer = 0;
lfoDelay = 0;
}
void Module::runLFO() {
if (lfoDelayState == 1) {
lfoDelayTimer += attackTable[patchRam.lfoDelay];
if (lfoDelayTimer > 0x3fff) lfoDelayState = 2;
}
if ((lfoDelayState == 2)) {
lfoDelay += lfoDelayTable[patchRam.lfoDelay >> 4];
}
if (lfoDelay > 0xff) {
lfoDelayState = 0;
lfoDelay = 0xff;
}
lfoRate = lfoRateTable[patchRam.lfoRate]; // FIXME move to parameters
lfoPhase += (lfoState & 0x01) ? -lfoRate : lfoRate;
if (lfoPhase > 0x1fff) {
lfoPhase = 0x1fff;
lfoState++;
}
if (lfoPhase < 0x0000) {
lfoPhase = 0x0000;
lfoState++;
}
lfo = (lfoState & 0x02) ? -lfoPhase : lfoPhase;
pw = (lfoState & 0x02) ? lfoPhase + 0x2000 : 0x2000 - lfoPhase; // PW LFO is unipolar
pw = (patchRam.switch2 & 0x01) ? 0x3fff : pw; // either LFO or "all on"
pw = 0x3fff - ((pw * patchRam.pwmLfo) >> 7); // scaled by PWM pot
}
void Module::run(Voice* voices, uint32_t blockSize) { void Module::run(Voice* voices, uint32_t blockSize) {
// run updates for module board // run updates for module board
int16_t lfoToVco = 0, lfoToVcf = 0;
// FIXME break these out to the patch setter // FIXME break these out to the patch setter
a = attackTable[patchRam.env_a]; // attack time coeff looked up in table a = attackTable[patchRam.env_a]; // attack time coeff looked up in table
d = decayTable[patchRam.env_d]; // decay time coeff looked up in table d = decayTable[patchRam.env_d]; // decay time coeff looked up in table
r = decayTable[patchRam.env_r]; // release time coeff looked up in table r = decayTable[patchRam.env_r]; // release time coeff looked up in table
s = patchRam.env_s << 7; // scale 0x00-0x7f to 0x0000-0x3f80 s = patchRam.env_s << 7; // scale 0x00-0x7f to 0x0000-0x3f80
master = powf(2, (patchRam.vca / 31.75 - 4.0f)) * 0.1; square = (patchRam.switch1 & 0x08) ? 0.63 : 0;
saw = (patchRam.switch1 & 0x10) ? 0.8 : 0;
sub = patchRam.sub / 127.0f;
lfoPhase += lfoRateTable[patchRam.lfoRate];
// originally I had 0.28, 0.36, 0.4 res = patchRam.vcfReso / 127.0 * 5;
// measurement suggests that saw and square are around 100mV each with sub 160mV noise = patchRam.noise / 127.0;
square = (patchRam.switch1 & 0x08) ? 0.3 : 0;
saw = (patchRam.switch1 & 0x10) ? .3 : 0;
sub = (patchRam.sub / 127.0f) * 0.48;
res = patchRam.vcfReso / 127.0;
noise = (patchRam.noise / 127.0) * 0.4;
// FIXME the exp in these is expensive, don't call it all the time // FIXME the exp in these is expensive, don't call it all the time
chorus->setChorus(patchRam.switch1 & 0x60); chorus->setChorus(patchRam.switch1 & 0x60);
chorus->setHpf(patchRam.switch2 & 0x18); chorus->setHpf(patchRam.switch2 & 0x18);
runLFO(); if (lfoPhase & 0x4000)
lfo = 0x1fff - (lfoPhase & 0x3fff);
else
lfo = (lfoPhase & 0x3fff) - 0x1fff;
// FIXME represent PW as int until we calculate the block?
pw = 0.5 - ((0x2000 + lfo) * patchRam.pwmLfo) / (32768.0f * 128);
pw = (patchRam.switch2 & 0x01) ? 0.5 - (patchRam.pwmLfo / 256.0f) : pw;
float master = powf(2, (patchRam.vca / 31.75 - 4.0f));
float sub = patchRam.sub/ 127.0f;
// calculate "smoothed" parameters
// these are single outputs with heavy RC smoothing
for (uint32_t i = 0; i < blockSize; i++) { for (uint32_t i = 0; i < blockSize; i++) {
vcaRC = (master - vcaRC) * subTC + vcaRC; vcaRC = (master - vcaRC) * subTC + vcaRC;
pwmRC = ((pw / 32768.0f) - pwmRC) * pwmTC + pwmRC; pwmRC = (pw - pwmRC) * pwmTC + pwmRC;
subRC = (sub - subRC) * vcaTC + subRC; subRC = (sub - subRC) * vcaTC + subRC;
vcaBuf[i] = vcaRC; vcaBuf[i] = vcaRC;
pwmBuf[i] = pwmRC; pwmBuf[i] = pwmRC;
subBuf[i] = subRC; subBuf[i] = subRC;
if (bufPtr < bufferSize) bufPtr++; if (bufPtr < bufferSize) bufPtr++;
} }
lfoToVco = (lfoDepthTable[patchRam.vcoLfo] * lfoDelay) >> 8; // lookup table is 0-255 int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1);
lfoToVco += /* lfo from modwheel FIXME */ 0;
if (lfoToVco > 0xff) lfoToVco = 0xff;
lfoToVco = (lfo * lfoToVco) >> 11; // 8 for normalisation plus three additional DSLR EA
lfoToVcf = (patchRam.vcfLfo * lfoDelay) >> 7; // value is 0-127 int16_t pitchBase = 0x1818;
lfoToVcf = (lfo * lfoToVcf) >> 9; // 8 for normalisation plus one additional DSLR EA pitchBase += (lfo * lfoDepthTable[patchRam.vcoLfo]) >> 9;
int16_t pitchBase = 0x1818, vcfBase = 0;
pitchBase += lfoToVco;
pitchBase += /* pitch bend FIXME */ 0;
// int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1);
vcfBase = (patchRam.vcfFreq << 7) + /* vcf bend FIXME */ 0;
vcfBase += lfoToVcf;
if (vcfBase > 0x3fff) vcfBase = 0x3fff;
if (vcfBase < 0x0000) vcfBase = 0x0000;
// per-voice calculations
for (uint32_t i = 0; i < NUM_VOICES; i++) { for (uint32_t i = 0; i < NUM_VOICES; i++) {
// run one step of the envelope // maybe move all this into voice.cpp FIXME
Voice* v = &voices[i]; Voice* v = &voices[i];
switch (v->envPhase) { switch (v->envPhase) {
case 0: // release phase FIXME use an enum I guess case 0: // release phase FIXME use an enum I guess
@ -170,22 +111,21 @@ void Module::run(Voice* voices, uint32_t blockSize) {
} }
// pitch // pitch
uint16_t pitch = pitchBase + (v->note << 8); // FIXME clean this all up a bit
uint8_t semi = pitch >> 8; int16_t pitch = pitchBase + (v->note << 8);
int16_t semi = pitch >> 8;
float frac = (pitch & 0xff) / 256.0; float frac = (pitch & 0xff) / 256.0;
float p1 = pitchTable[semi], p2 = pitchTable[semi + 1]; float p1 = pitchTable[semi], p2 = pitchTable[semi + 1];
int16_t px = ((p2 - p1) * frac + p1); // interpolated pitch from table int16_t px = ((p2 - p1) * frac + p1);
// octave divider
px *= (patchRam.switch1 & 0x07); px *= (patchRam.switch1 & 0x07);
v->omega = px / (sampleRate * 8.0f); // FIXME recalculate table using proper scaler v->omega = px / (sampleRate * 4.0f); // fixme use proper scaler
// per voice we need to calculate the key follow amount and envelope amount // per voice we need to calculate the key follow amount and envelope amount
v->vcfCut = vcfBase + (((v->env * patchRam.vcfEnv)>>7) * ((patchRam.switch1 & 0x02) ? -1 : 1)); v->vcfCut = (patchRam.vcfFreq << 7) + ((vcf * v->env) >> 14);
v->vcfCut += (int)(v->note * (patchRam.vcfKey << 1) * 0.375);
v->vcfCut += (int)((v->note - 36) * (patchRam.vcfKey << 1) * 0.375);
if (v->vcfCut > 0x3fff) v->vcfCut = 0x3fff; if (v->vcfCut > 0x3fff) v->vcfCut = 0x3fff;
if (v->vcfCut < 0) v->vcfCut = 0; if (v->vcfCut < 0) v->vcfCut = 0;

View File

@ -33,85 +33,40 @@ class Module {
Module(); Module();
~Module(); ~Module();
void genNoise();
void lfoRampOn();
void run(Voice* voices, uint32_t blockLeft); void run(Voice* voices, uint32_t blockLeft);
float res = 0; float res = 0;
// precomputed values for all voices
float pw; //, saw, square, sub;
// "internal state" values for patch parameters // "internal state" values for patch parameters
uint16_t a, d, s, r; uint16_t a, d, s, r;
int16_t lfo;
uint32_t lfoPhase;
float saw = 0, square = 0, sub = 0, noise = 0, master = 0; float saw = 0, square = 0, sub = 0, noise = 0;
/*
#if 0
struct {
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3b;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80
uint8_t vcfReso = 0x6a;
uint8_t vcfEnv = 0x25; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x35;
uint8_t env_a = 0x00;
uint8_t env_d = 0x3c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18;
} patchRam;
#else
struct {
uint8_t lfoRate = 0x40;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x01;
uint8_t vcfFreq = 0x31;
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x00;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x7f;
uint8_t vca = 0x40;
uint8_t env_a = 0x00;
uint8_t env_d = 0x00;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x00;
uint8_t sub = 0x00;
uint8_t switch1 = 0x22;
uint8_t switch2 = 0x1d;
} patchRam;
#endif
*/
struct { struct {
uint8_t lfoRate = 0x1f; uint8_t lfoRate = 0x18;
uint8_t lfoDelay = 0x00; uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00; uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3c; uint8_t pwmLfo = 0x60;
uint8_t noise = 0x00; uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80 uint8_t vcfFreq = 0x30; // 1c; // 0x3f80
uint8_t vcfReso = 0x1d; uint8_t vcfReso = 0x00;
uint8_t vcfEnv = 0x1c; // 4e; uint8_t vcfEnv = 0x40; // 4e;
uint8_t vcfLfo = 0x00; uint8_t vcfLfo = 0;
uint8_t vcfKey = 0x2b; // 47; uint8_t vcfKey = 0x7f; // 47;
uint8_t vca = 0x5c; uint8_t vca = 0x28;
uint8_t env_a = 0x00; uint8_t env_a = 0x00;
uint8_t env_d = 0x2a; uint8_t env_d = 0x39;
uint8_t env_s = 0x23; // 0x3f80 uint8_t env_s = 0x30; // 0x3f80
uint8_t env_r = 0x00; uint8_t env_r = 0x30;
uint8_t sub = 0x40; uint8_t sub = 0x40;
uint8_t switch1 = 0x19; uint8_t switch1 = 0x59;
uint8_t switch2 = 0x18; uint8_t switch2 = 0x18;
} patchRam; } patchRam;
Chorus* chorus; Chorus* chorus;
float vcaTC; float vcaTC;
@ -120,25 +75,13 @@ class Module {
float* vcaBuf; float* vcaBuf;
float* subBuf; float* subBuf;
float* pwmBuf; float* pwmBuf;
float* noiseBuf;
private: private:
void runLFO();
// precalculated coefficients for RC networks // precalculated coefficients for RC networks
float pwmTC = 0, subTC = 0, mVcaTC = 0; float pwmTC = 0, subTC = 0, mVcaTC = 0;
float pwmRC = 0, subRC = 0, vcaRC = 0; float pwmRC = 0, subRC = 0, vcaRC = 0;
int16_t lfo, pw; // controls
int16_t lfoPhase;
uint8_t lfoState = 0;
uint16_t lfoRate;
uint32_t noiseRNG = 1;
uint16_t lfoDelay = 0;
uint8_t lfoDelayState = 0;
uint16_t lfoDelayTimer = 0;
}; };
class Voice { class Voice {
@ -148,7 +91,7 @@ class Voice {
Voice(); Voice();
void on(uint8_t midiNote); void on(uint8_t midiNote);
void off(); void off();
void run(Module* m, float* buffer, uint32_t framePos, uint32_t samples); void run(Module* m, float* buffer, uint32_t samples);
private: private:
float omega = 0, theta = 0; // phase increment and angle FIXME better names float omega = 0, theta = 0; // phase increment and angle FIXME better names
@ -156,16 +99,16 @@ class Voice {
uint8_t pulseStage = 1; // pulse wave phase uint8_t pulseStage = 1; // pulse wave phase
float subosc = 1; // sub oscillator flipflop output float subosc = 1; // sub oscillator flipflop output
uint8_t envPhase = 0; // current running state of envelope uint8_t envPhase = 0;
int16_t env = 0; // calculated envelope amount int16_t env = 0; // output amplitude
int16_t vcfCut; // calculated cutoff to filter int16_t vcfCut;
int16_t vcaEnv; // calculated level to VCA (env/gate) int16_t vcaEnv;
float vcaRC = 0, vcfRC = 0; // RC circuit state values float vcaRC = 0, vcfRC = 0;
uint8_t note = 0; uint8_t note = 0;
// filter // filter
float y0 = 0, y1 = 0, y2 = 0, y3 = 0; float b1 = 0, b2 = 0, b3 = 0, b4 = 0;
}; };
#endif #endif

View File

@ -23,7 +23,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pLFORate: case pLFORate:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "LFO Rate"; parameter.name = "LFO Rate";
parameter.symbol = "pfau_lforate"; parameter.symbol = "ch_lforate";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 48.0f; parameter.ranges.def = 48.0f;
@ -33,7 +33,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pLFODelay: case pLFODelay:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "LFO Delay"; parameter.name = "LFO Delay";
parameter.symbol = "pfau_lfodelay"; parameter.symbol = "ch_lfodelay";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -43,7 +43,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pVCORange: case pVCORange:
parameter.hints = kParameterIsAutomatable | kParameterIsInteger; parameter.hints = kParameterIsAutomatable | kParameterIsInteger;
parameter.name = "Range"; parameter.name = "Range";
parameter.symbol = "pfau_vcorange"; parameter.symbol = "ch_vcorange";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 2.0f; parameter.ranges.max = 2.0f;
parameter.ranges.def = 1.0f; parameter.ranges.def = 1.0f;
@ -65,7 +65,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pLFODepth: case pLFODepth:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "LFO"; parameter.name = "LFO";
parameter.symbol = "pfau_lfo"; parameter.symbol = "ch_lfo";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 10.0f; parameter.ranges.def = 10.0f;
@ -75,7 +75,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pPWMDepth: case pPWMDepth:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "PWM"; parameter.name = "PWM";
parameter.symbol = "pfau_pwm"; parameter.symbol = "ch_pwm";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 48.0f; parameter.ranges.def = 48.0f;
@ -85,7 +85,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pPWMMode: case pPWMMode:
parameter.hints = kParameterIsAutomatable | kParameterIsBoolean; parameter.hints = kParameterIsAutomatable | kParameterIsBoolean;
parameter.name = "PWM Mode"; parameter.name = "PWM Mode";
parameter.symbol = "pfau_pwmmode"; parameter.symbol = "ch_pwmmode";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 1.0f; parameter.ranges.max = 1.0f;
parameter.ranges.def = 1.0f; parameter.ranges.def = 1.0f;
@ -106,7 +106,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pSaw: case pSaw:
parameter.hints = kParameterIsAutomatable | kParameterIsBoolean; parameter.hints = kParameterIsAutomatable | kParameterIsBoolean;
parameter.name = "Saw"; parameter.name = "Saw";
parameter.symbol = "pfau_saw"; parameter.symbol = "ch_saw";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 1.0f; parameter.ranges.max = 1.0f;
parameter.ranges.def = 1.0f; parameter.ranges.def = 1.0f;
@ -116,7 +116,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pSqr: case pSqr:
parameter.hints = kParameterIsAutomatable | kParameterIsBoolean; parameter.hints = kParameterIsAutomatable | kParameterIsBoolean;
parameter.name = "Square"; parameter.name = "Square";
parameter.symbol = "pfau_sqr"; parameter.symbol = "ch_sqr";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 1.0f; parameter.ranges.max = 1.0f;
parameter.ranges.def = 1.0f; parameter.ranges.def = 1.0f;
@ -126,7 +126,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pSubLevel: case pSubLevel:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Sub Osc"; parameter.name = "Sub Osc";
parameter.symbol = "pfau_sub"; parameter.symbol = "ch_sub";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -136,7 +136,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pNoiseLevel: case pNoiseLevel:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Noise"; parameter.name = "Noise";
parameter.symbol = "pfau_noise"; parameter.symbol = "ch_noise";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -146,7 +146,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pHPF: case pHPF:
parameter.hints = kParameterIsAutomatable | kParameterIsInteger; parameter.hints = kParameterIsAutomatable | kParameterIsInteger;
parameter.name = "HPF"; parameter.name = "HPF";
parameter.symbol = "pfau_hpf"; parameter.symbol = "ch_hpf";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 3.9f; parameter.ranges.max = 3.9f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -156,7 +156,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pCutoff: case pCutoff:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Freq"; parameter.name = "Freq";
parameter.symbol = "pfau_freq"; parameter.symbol = "ch_freq";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 60.0f; parameter.ranges.def = 60.0f;
@ -165,7 +165,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pRes: case pRes:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Res"; parameter.name = "Res";
parameter.symbol = "pfau_reso"; parameter.symbol = "ch_reso";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -174,7 +174,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pVCFPol: case pVCFPol:
parameter.hints = kParameterIsAutomatable | kParameterIsInteger; parameter.hints = kParameterIsAutomatable | kParameterIsInteger;
parameter.name = "Polarity"; parameter.name = "Polarity";
parameter.symbol = "pfau_vcfmode"; parameter.symbol = "ch_vcfmode";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 1.0f; parameter.ranges.max = 1.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -194,7 +194,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pEnv: case pEnv:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Env"; parameter.name = "Env";
parameter.symbol = "pfau_vcfenv"; parameter.symbol = "ch_vcfenv";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 46.0f; parameter.ranges.def = 46.0f;
@ -203,7 +203,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pLfo: case pLfo:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "LFO"; parameter.name = "LFO";
parameter.symbol = "pfau_vcflfo"; parameter.symbol = "ch_vcflfo";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -212,7 +212,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pKyb: case pKyb:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Kybd"; parameter.name = "Kybd";
parameter.symbol = "pfau_vcfkey"; parameter.symbol = "ch_vcfkey";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 71.0f; parameter.ranges.def = 71.0f;
@ -222,7 +222,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pAttack: case pAttack:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Attack"; parameter.name = "Attack";
parameter.symbol = "pfau_attack"; parameter.symbol = "ch_attack";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 27.0f; parameter.ranges.def = 27.0f;
@ -232,7 +232,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pDecay: case pDecay:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Decay"; parameter.name = "Decay";
parameter.symbol = "pfau_decay"; parameter.symbol = "ch_decay";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 57.0f; parameter.ranges.def = 57.0f;
@ -242,7 +242,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pSustain: case pSustain:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Sustain"; parameter.name = "Sustain";
parameter.symbol = "pfau_sustain"; parameter.symbol = "ch_sustain";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 57.0f; parameter.ranges.def = 57.0f;
@ -252,7 +252,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pRelease: case pRelease:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "Release"; parameter.name = "Release";
parameter.symbol = "pfau_release"; parameter.symbol = "ch_release";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 48.0f; parameter.ranges.def = 48.0f;
@ -262,7 +262,7 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pEnvGate: case pEnvGate:
parameter.hints = kParameterIsAutomatable | kParameterIsInteger; // | kParameterIsBoolean; parameter.hints = kParameterIsAutomatable | kParameterIsInteger; // | kParameterIsBoolean;
parameter.name = "Env-Gate"; parameter.name = "Env-Gate";
parameter.symbol = "pfau_envgate"; parameter.symbol = "ch_envgate";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 1.0f; parameter.ranges.max = 1.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -282,38 +282,39 @@ void Peacock::initParameter(uint32_t index, Parameter& parameter) {
case pVCALevel: case pVCALevel:
parameter.hints = kParameterIsAutomatable; parameter.hints = kParameterIsAutomatable;
parameter.name = "VCA Level"; parameter.name = "VCA Level";
parameter.symbol = "pfau_vcalevel"; parameter.symbol = "ch_vcalevel";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 40.0f; parameter.ranges.def = 40.0f;
parameter.midiCC = 26; parameter.midiCC = 26;
break; break;
case pChorusMode: case pChorus:
parameter.hints = kParameterIsAutomatable | kParameterIsInteger; parameter.hints = kParameterIsAutomatable | kParameterIsInteger;
parameter.name = "Chorus"; parameter.name = "Chorus";
parameter.symbol = "pfau_chorus"; parameter.symbol = "ch_chorus";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 2.0f; parameter.ranges.max = 2.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 1.0f;
parameter.midiCC = 93; parameter.midiCC = 93;
parameter.enumValues.count = 3; parameter.enumValues.count = 3;
parameter.enumValues.restrictedMode = true; parameter.enumValues.restrictedMode = true;
{ {
ParameterEnumerationValue* const enumValues = new ParameterEnumerationValue[3]; ParameterEnumerationValue* const enumValues = new ParameterEnumerationValue[3];
enumValues[0].value = 0.0f; enumValues[0].value = 0.0f;
enumValues[0].label = "Off"; enumValues[0].label = "Off'";
enumValues[1].value = 1.0f; enumValues[1].value = 1.0f;
enumValues[1].label = "Slow"; enumValues[1].label = "Slow";
enumValues[2].value = 2.0f; enumValues[2].value = 2.0f;
enumValues[2].label = "Fast"; enumValues[2].label = "Fast";
parameter.enumValues.values = enumValues; parameter.enumValues.values = enumValues;
} }
break;
/* /*
case pModWheel: case pModWheel:
parameter.hints = kParameterIsAutomatable | kParameterIsHidden; parameter.hints = kParameterIsAutomatable | kParameterIsHidden;
parameter.name = "Mod wheel"; parameter.name = "Mod wheel";
parameter.symbol = "pfau_modwheel"; parameter.symbol = "ch_modwheel";
parameter.ranges.min = 0.0f; parameter.ranges.min = 0.0f;
parameter.ranges.max = 127.0f; parameter.ranges.max = 127.0f;
parameter.ranges.def = 0.0f; parameter.ranges.def = 0.0f;
@ -399,7 +400,7 @@ void Peacock::setParameterValue(uint32_t index, float value) {
m->patchRam.switch1 |= (value >= 0.5) << 4; m->patchRam.switch1 |= (value >= 0.5) << 4;
break; break;
case pChorusMode: case pChorus:
m->patchRam.switch1 &= 0x9f; m->patchRam.switch1 &= 0x9f;
switch ((int)value) { switch ((int)value) {
case 0: case 0:
@ -525,7 +526,8 @@ float Peacock::getParameterValue(uint32_t index) const {
case pVCALevel: case pVCALevel:
return m->patchRam.vca; return m->patchRam.vca;
break; break;
case pChorusMode: case pChorus:
switch (m->patchRam.switch1 & 0x60) { switch (m->patchRam.switch1 & 0x60) {
case 0x60: case 0x60:
return 0; return 0;

View File

@ -32,7 +32,6 @@ Peacock::Peacock() : Plugin(parameterCount, 0, 0) {
m = new Module(); m = new Module();
ic1 = new Assigner; ic1 = new Assigner;
ic1->voice = voice; ic1->voice = voice;
ic1->m = m;
m->chorus = chorus; m->chorus = chorus;
} }
@ -70,27 +69,27 @@ void Peacock::run(const float**, float** outputs, uint32_t frames, const MidiEve
memset(outputs[0], 0, frames * sizeof(float)); memset(outputs[0], 0, frames * sizeof(float));
memset(outputs[1], 0, frames * sizeof(float)); memset(outputs[1], 0, frames * sizeof(float));
m->genNoise();
// if there were any events that happen between now and the end of this block, process them // if there were any events that happen between now and the end of this block, process them
lastEvent = 0; lastEvent = 0;
m->bufPtr = 0; // reset the output buffer pointer m->bufPtr = 0;
runMidi(midiEvents, midiEventCount, blockLeft); runMidi(midiEvents, midiEventCount, blockLeft);
while (framePos < frames) { while (framePos < frames) {
if (blockLeft == 0) { if (blockLeft == 0) {
// no more samples to calculate in this update period // no more samples to calculate in this update period
blockLeft = sampleRate / 233.5; // update rate in Hz, measured blockLeft = sampleRate / 238; // update rate in Hz
runMidi(midiEvents, midiEventCount, framePos + blockLeft); runMidi(midiEvents, midiEventCount, framePos + blockLeft);
m->run(voice, blockLeft);
} }
// how many frames to do? Are we about to run off an update block // how many frames to do? Are we about to run off an update block
sizeThisTime = (framesLeft < blockLeft) ? framesLeft : blockLeft; sizeThisTime = (framesLeft < blockLeft) ? framesLeft : blockLeft;
m->run(voice, sizeThisTime);
// now run all the voices for this chunk of samples // now run all the voices for this chunk of samples
for (uint32_t i = 0; i < NUM_VOICES; i++) { for (uint32_t i = 0; i < NUM_VOICES; i++) {
voice[i].run(m, outputs[0], framePos, sizeThisTime); voice[i].run(m, outputs[0] + framePos, sizeThisTime);
} }
framePos += sizeThisTime; framePos += sizeThisTime;
@ -99,7 +98,7 @@ void Peacock::run(const float**, float** outputs, uint32_t frames, const MidiEve
} }
// now we've assembled a full chunk of audio // now we've assembled a full chunk of audio
// memcpy(outputs[0], m->vcaBuf, sizeof(float)* frames); //memcpy(outputs[0], m->vcaBuf, sizeof(float)* frames);
chorus->run(outputs[0], outputs, frames); chorus->run(outputs[0], outputs, frames);
} }

View File

@ -258,20 +258,18 @@ void DistrhoUIPeacock::parameterChanged(uint32_t index, float value) {
sw1 &= 0xf8; // mask sw1 &= 0xf8; // mask
if (value > 2) value = 2; if (value > 2) value = 2;
sw1 |= (1 << (int)value); sw1 |= (1 << (int)value);
repaint(); xBtn16ft->repaint(); // will repaint all the panel
break; break;
case pSqr: case pSqr:
sw1 &= 0xf7; sw1 &= 0xf7;
sw1 |= ((value >= 0.5)) << 3; sw1 |= ((value >= 0.5)) << 3;
repaint();
break; break;
case pSaw: case pSaw:
sw1 &= 0xef; sw1 &= 0xef;
sw1 |= (value > 0.5) << 4; sw1 |= (value > 0.5) << 4;
repaint();
break; break;
case pChorusMode: case pChorus:
sw1 &= 0x9f; sw1 &= 0x9f;
// 60, 40, 00 // 60, 40, 00
switch ((int)value) { switch ((int)value) {
@ -285,8 +283,6 @@ void DistrhoUIPeacock::parameterChanged(uint32_t index, float value) {
sw1 |= 0x00; sw1 |= 0x00;
break; break;
} }
repaint();
break;
} }
} }
@ -330,21 +326,20 @@ void DistrhoUIPeacock::imageButtonClicked(ImageButton* imgBtn, int) {
break; break;
case btnCh0: case btnCh0:
sw1 = (sw1 & 0x9f) | 0x20; sw1 = (sw1 & 0x9f) | 0x20;
setParameterValue(pChorusMode, 0); setParameterValue(pChorus, 0);
break; break;
case btnCh1: case btnCh1:
sw1 = (sw1 & 0x9f) | 0x40; sw1 = (sw1 & 0x9f) | 0x40;
setParameterValue(pChorusMode, 1); setParameterValue(pChorus, 1);
break; break;
case btnCh2: case btnCh2:
sw1 = (sw1 & 0x9f); sw1 = (sw1 & 0x9f);
setParameterValue(pChorusMode, 2); setParameterValue(pChorus, 2);
break; break;
default: default:
break; break;
} }
repaint();
} }
void DistrhoUIPeacock::onDisplay() { void DistrhoUIPeacock::onDisplay() {

View File

@ -40,9 +40,11 @@ Voice::Voice() {
} }
void Voice::on(uint8_t midiNote) { void Voice::on(uint8_t midiNote) {
while (midiNote < 24) midiNote += 12; // omega = 261.63 * powf(2, (note - 60) / 12.0f) / 48000.0f;
while (midiNote > 108) midiNote -= 12; if (midiNote > 24)
note = midiNote - 24; note = midiNote - 24;
else
note = 24;
envPhase = 1; envPhase = 1;
} }
@ -50,27 +52,15 @@ void Voice::off() {
envPhase = 0; envPhase = 0;
} }
// tanh(x)/x approximation, flatline at very high inputs void Voice::run(Module* m, float* buffer, uint32_t samples) {
// so might not be safe for very large feedback gains
// [limit is 1/15 so very large means ~15 or +23dB]
float tanhXdX(float x) {
return 1 - 0.05 * abs(x);
float s = 0.0333, d = 30.0;
return 1.0f - s * (d + 1.0f) * x * x / (d + x * x);
}
void Voice::run(Module* m, float* buffer, uint32_t framePos, uint32_t samples) {
// carry out per-voice calculations for each block of samples // carry out per-voice calculations for each block of samples
float out, t, fb; float out, t, fb;
// FIXME incorrect
// calculate cutoff frequency // calculate cutoff frequency
float cut = 261.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f)); // FIXME explain magic numbers float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = M_PI * cut / sampleRate; cut = 0.25 * 6.2832 * cut / 48000.0f; // FIXME hardcoded values
cut = cut / (1 + cut); // correct tuning warp cut = cut / (1 + cut); // correct tuning warp
if (cut > 0.7) cut = 0.7;
float r = 5 * m->res;
float amp = vcaEnv / 4096.0f; float amp = vcaEnv / 4096.0f;
@ -104,31 +94,36 @@ void Voice::run(Module* m, float* buffer, uint32_t framePos, uint32_t samples) {
} }
} }
// FIXME DC offset removal
delay += m->saw * (1 - (2 * theta)); delay += m->saw * (1 - (2 * theta));
delay += m->square * ((pulseStage ? -1.f : 1.f) - m->pwmBuf[i] + 0.5); delay += m->square * ((pulseStage ? -1.f : 1.f) - m->pwmBuf[i] + 0.5);
delay += m->subBuf[i] * subosc; delay += m->subBuf[i] * subosc ;
out += m->noise * m->noiseBuf[i + framePos]; out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0);
out *= 0.5;
// same time constant for both VCF and VCF RC circuits // same time constant for both VCF and VCF RC circuits
vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC; vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC;
for (uint8_t ovs = 0; ovs < 2; ovs++) { for (uint8_t ovs = 0; ovs < 4; ovs++) {
fb = y3; fb = b4;
// hard clip // hard clip
fb = ((out * 0.5) - fb) * r; fb = ((out * 0.5) - fb) * m->res;
if (fb > 2) fb = 2; if (fb > 4) fb = 4;
if (fb < -2) fb = -2; if (fb < -4) fb = -4;
// fb = 1.5 * fb - 0.5 * fb * fb * fb;
//
y0 = ((out + fb - y0) * vcfRC) + y0; b1 = ((out + fb - b1) * vcfRC) + b1;
y1 = ((y0 - y1) * vcfRC) + y1; b2 = ((b1 - b2) * vcfRC) + b2;
y2 = ((y1 - y2) * vcfRC) + y2; b3 = ((b2 - b3) * vcfRC) + b3;
y3 = ((y2 - y3) * vcfRC) + y3; b4 = ((b3 - b4) * vcfRC) + b4;
} }
vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC; vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC;
buffer[framePos + i] += m->vcaBuf[i] * vcaRC * y3; buffer[i] += 0.09367 * m->vcaBuf[i] * vcaRC * b4;
lastpw = m->pwmBuf[i]; lastpw = m->pwmBuf[i];
} }
// buffer[0] += 1; // buzzing noise to test // buffer[0] += 1;
} }