peacock/plugin/voice.cpp

130 lines
3.9 KiB
C++

/*
Peacock-8 VA polysynth
Copyright 2025 Gordon JC Pearce <gordonjcp@gjcp.net>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <math.h>
#include <stdio.h>
#include "module.hpp"
#include "tables.hpp"
// antialiasing using polybleps, as described in KVRAudio forum by Mystran
static inline float poly3blep0(float t) {
float t2 = t * t;
return 2 * (t * t2 - 0.5f * t2 * t2);
}
static inline float poly3blep1(float t) {
return -poly3blep0(1 - t);
}
Voice::Voice() {
omega = 0.0;
theta = 0.0;
env = 0;
}
void Voice::on(uint8_t midiNote) {
// omega = 261.63 * powf(2, (note - 60) / 12.0f) / 48000.0f;
if (midiNote > 24)
note = midiNote - 24;
else
note = 24;
envPhase = 1;
}
void Voice::off() {
envPhase = 0;
}
void Voice::run(Module* m, float* buffer, uint32_t samples) {
// carry out per-voice calculations for each block of samples
float out, t, fb;
// FIXME incorrect
// calculate cutoff frequency
float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = 0.25 * 6.2832 * cut / 48000.0f; // FIXME hardcoded values
cut = cut / (1 + cut); // correct tuning warp
float amp = vcaEnv / 4096.0f;
for (uint32_t i = 0; i < samples; i++) {
out = delay;
delay = 0;
theta += omega;
while (true) {
if (pulseStage == 0) {
if (theta < m->pwmBuf[i]) break;
t = (theta - m->pwmBuf[i]) / (lastpw - m->pwmBuf[i] + omega);
out -= poly3blep0(t) * m->square;
delay -= poly3blep1(t) * m->square;
pulseStage = 1;
}
if (pulseStage == 1) {
if (theta < 1) break; // no need to blep yet
t = (theta - 1) / omega; // scaled remainder of phase
out += poly3blep0(t) * (m->saw + m->square);
delay += poly3blep1(t) * (m->saw + m->square);
out -= poly3blep0(t) * (m->subBuf[i] * subosc);
delay -= poly3blep1(t) * (m->subBuf[i] * subosc);
pulseStage = 0;
subosc = -subosc;
theta -= 1;
}
}
// FIXME DC offset removal
delay += m->saw * (1 - (2 * theta));
delay += m->square * ((pulseStage ? -1.f : 1.f) - m->pwmBuf[i] + 0.5);
delay += m->subBuf[i] * subosc ;
out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0);
out *= 0.5;
// same time constant for both VCF and VCF RC circuits
vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC;
for (uint8_t ovs = 0; ovs < 4; ovs++) {
fb = b4;
// hard clip
fb = ((out * 0.5) - fb) * m->res;
if (fb > 4) fb = 4;
if (fb < -4) fb = -4;
// fb = 1.5 * fb - 0.5 * fb * fb * fb;
//
b1 = ((out + fb - b1) * vcfRC) + b1;
b2 = ((b1 - b2) * vcfRC) + b2;
b3 = ((b2 - b3) * vcfRC) + b3;
b4 = ((b3 - b4) * vcfRC) + b4;
}
vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC;
buffer[i] += 0.09367 * m->vcaBuf[i] * vcaRC * b4;
lastpw = m->pwmBuf[i];
}
// buffer[0] += 1;
}