Compare commits

..

2 Commits

Author SHA1 Message Date
Gordon JC Pearce ad7b7f4405 formatting cleanup 2025-12-28 12:08:42 +00:00
Gordon JC Pearce 36c27f14d8 mystran filter 2025-12-26 22:08:52 +00:00
3 changed files with 164 additions and 30 deletions

View File

@ -74,7 +74,7 @@ void Module::run(Voice* voices, uint32_t blockSize) {
sub = patchRam.sub / 127.0f;
lfoPhase += lfoRateTable[patchRam.lfoRate];
res = patchRam.vcfReso / 127.0 * 5;
res = patchRam.vcfReso / 127.0;
noise = patchRam.noise / 127.0;
// FIXME the exp in these is expensive, don't call it all the time

View File

@ -48,26 +48,74 @@ class Module {
float saw = 0, square = 0, sub = 0, noise = 0;
/*
#if 0
struct {
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3b;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80
uint8_t vcfReso = 0x6a;
uint8_t vcfEnv = 0x25; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x35;
uint8_t env_a = 0x00;
uint8_t env_d = 0x3c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18;
} patchRam;
#else
struct {
uint8_t lfoRate = 0x40;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x01;
uint8_t vcfFreq = 0x31;
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x00;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x7f;
uint8_t vca = 0x40;
uint8_t env_a = 0x00;
uint8_t env_d = 0x00;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x00;
uint8_t sub = 0x00;
uint8_t switch1 = 0x22;
uint8_t switch2 = 0x1d;
} patchRam;
#endif
*/
struct {
uint8_t lfoRate = 0x58;
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3b;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80
uint8_t vcfReso = 0x6a;
uint8_t vcfEnv = 0x25; // 4e;
uint8_t vcfFreq = 0x00; // 1c; // 0x3f80
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x7f; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x35;
uint8_t vca = 0x20;
uint8_t env_a = 0x00;
uint8_t env_d = 0x3c;
uint8_t env_d = 0x5c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18;
uint8_t switch1 = 0x3a;
uint8_t switch2 = 0x19;
} patchRam;
Chorus* chorus;
float vcaTC;
@ -104,14 +152,16 @@ class Voice {
uint8_t envPhase = 0;
int16_t env = 0; // output amplitude
int16_t vcfCut;
uint16_t vcfCut;
int16_t vcaEnv;
float vcaRC = 0, vcfRC = 0;
uint8_t note = 0;
// filter
float b1 = 0, b2 = 0, b3 = 0, b4 = 0;
float y0 = 0, y1 = 0, y2 = 0, y3 = 0;
double s[4] = {0, 0, 0, 0};
float zi = 0;
};
#endif

View File

@ -41,7 +41,7 @@ Voice::Voice() {
void Voice::on(uint8_t midiNote) {
while (midiNote < 24) midiNote += 12;
while (midiNote > 108) midiNote -=12;
while (midiNote > 108) midiNote -= 12;
note = midiNote - 24;
envPhase = 1;
}
@ -50,15 +50,26 @@ void Voice::off() {
envPhase = 0;
}
// tanh(x)/x approximation, flatline at very high inputs
// so might not be safe for very large feedback gains
// [limit is 1/15 so very large means ~15 or +23dB]
double tanhXdX(double x) {
float s = 0.0333, d = 30.0;
return 1.0f - s * (d + 1.0f) * x * x / (d + x * x);
}
void Voice::run(Module* m, float* buffer, uint32_t samples) {
// carry out per-voice calculations for each block of samples
float out, t, fb;
// FIXME incorrect
// calculate cutoff frequency
float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = 0.25 * 6.2832 * cut / 48000.0f; // FIXME hardcoded values
cut = cut / (1 + cut); // correct tuning warp
float cut = 261.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = M_PI * cut / sampleRate;
cut = cut / (1 + cut); // correct tuning warp
// if (cut > 0.7) cut = 0.7;
double r = 5 * m->res;
float amp = vcaEnv / 4096.0f;
@ -95,31 +106,104 @@ void Voice::run(Module* m, float* buffer, uint32_t samples) {
// FIXME DC offset removal
delay += m->saw * (1 - (2 * theta));
delay += m->square * ((pulseStage ? -1.f : 1.f) - m->pwmBuf[i] + 0.5);
delay += m->subBuf[i] * subosc ;
delay += m->subBuf[i] * subosc;
out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0);
out *= 0.5;
// out *= 0.1;
// same time constant for both VCF and VCF RC circuits
vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC;
for (uint8_t ovs = 0; ovs < 4; ovs++) {
fb = b4;
#if 1
//// LICENSE TERMS: Copyright 2012 Teemu Voipio
//
// You can use this however you like for pretty much any purpose,
// as long as you don't claim you wrote it. There is no warranty.
//
// Distribution of substantial portions of this code in source form
// must include this copyright notice and list of conditions.
//
// input delay and state for member variables
// cutoff as normalized frequency (eg 0.5 = Nyquist)
// resonance from 0 to 1, self-oscillates at settings over 0.9
// void transistorLadder(
// double cutoff, double resonance,
// double * in, double * out, unsigned nsamples)
//{
// tuning and feedback
//------------------------------------------------------------------------------ sample loop
// for(unsigned n = 0; n < nsamples; ++n)
//{
out *= 0.025;
// input with half delay, for non-linearities
double ih = 0.5 * (out + zi);
zi = out;
// double ih = out;
// evaluate the non-linear gains
double t0 = tanhXdX((ih * (r + 1)) - r * s[3]);
double t1 = tanhXdX(s[0]);
double t2 = tanhXdX(s[1]);
double t3 = tanhXdX(s[2]);
double t4 = tanhXdX(s[3]);
double f = vcfRC;
// g# the denominators for solutions of individual stages
double g0 = 1 / (1 + f * t1), g1 = 1 / (1 + f * t2);
double g2 = 1 / (1 + f * t3), g3 = 1 / (1 + f * t4);
// f# are just factored out of the feedback solution
double f3 = f * t3 * g3, f2 = f * t2 * g2 * f3, f1 = f * t1 * g1 * f2, f0 = f * t0 * g0 * f1;
// solve feedback
double y3 = (g3 * s[3] + f3 * g2 * s[2] + f2 * g1 * s[1] + f1 * g0 * s[0] + f0 * out) / (1 + r * f0);
// then solve the remaining outputs (with the non-linear gains here)
double xx = t0 * ((out * (r + 1)) - r * y3);
double y0 = t1 * g0 * (s[0] + f * xx);
double y1 = t2 * g1 * (s[1] + f * y0);
double y2 = t3 * g2 * (s[2] + f * y1);
// update state
s[0] += 2 * f * (xx - y0);
s[1] += 2 * f * (y0 - y1);
s[2] += 2 * f * (y1 - y2);
s[3] += 2 * f * (y2 - t4 * y3);
// out[n] = y3;
// }
// out *= 0.1;
out = y3;
#else
out *= 0.5;
for (uint8_t ovs = 0; ovs < 2; ovs++) {
fb = y3;
// hard clip
fb = ((out * 0.5) - fb) * m->res;
fb = ((out * 0.5) - fb) * r;
if (fb > 4) fb = 4;
if (fb < -4) fb = -4;
// fb = 1.5 * fb - 0.5 * fb * fb * fb;
//
b1 = ((out + fb - b1) * vcfRC) + b1;
b2 = ((b1 - b2) * vcfRC) + b2;
b3 = ((b2 - b3) * vcfRC) + b3;
b4 = ((b3 - b4) * vcfRC) + b4;
y0 = ((out + fb - y0) * vcfRC) + y0;
y1 = ((y0 - y1) * vcfRC) + y1;
y2 = ((y1 - y2) * vcfRC) + y2;
y3 = ((y2 - y3) * vcfRC) + y3;
}
#endif
vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC;
buffer[i] += 0.09367 * m->vcaBuf[i] * vcaRC * b4;
buffer[i] += m->vcaBuf[i] * vcaRC * out;
lastpw = m->pwmBuf[i];
}