formatting cleanup

This commit is contained in:
Gordon JC Pearce 2025-12-28 12:08:42 +00:00
parent 36c27f14d8
commit ad7b7f4405
2 changed files with 120 additions and 108 deletions

View File

@ -48,50 +48,74 @@ class Module {
float saw = 0, square = 0, sub = 0, noise = 0;
#if 0
struct {
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3b;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80
uint8_t vcfReso = 0x6a;
uint8_t vcfEnv = 0x25; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x35;
uint8_t env_a = 0x00;
uint8_t env_d = 0x3c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18;
} patchRam;
/*
#if 0
struct {
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x3b;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x25; // 1c; // 0x3f80
uint8_t vcfReso = 0x6a;
uint8_t vcfEnv = 0x25; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x35;
uint8_t env_a = 0x00;
uint8_t env_d = 0x3c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18;
} patchRam;
#else
struct {
uint8_t lfoRate = 0x40;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x01;
uint8_t vcfFreq = 0x31;
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x00;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x7f;
uint8_t vca = 0x40;
uint8_t env_a = 0x00;
uint8_t env_d = 0x00;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x00;
uint8_t sub = 0x00;
uint8_t switch1 = 0x22;
uint8_t switch2 = 0x1d;
} patchRam;
#endif
*/
#else
struct {
uint8_t lfoRate = 0x40;
uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x01;
uint8_t vcfFreq = 0x31;
uint8_t noise = 0x00;
uint8_t vcfFreq = 0x00; // 1c; // 0x3f80
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x00;
uint8_t vcfEnv = 0x7f; // 4e;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x7f;
uint8_t vca = 0x40;
uint8_t vcfKey = 0x00; // 47;
uint8_t vca = 0x20;
uint8_t env_a = 0x00;
uint8_t env_d = 0x00;
uint8_t env_d = 0x5c;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x00;
uint8_t sub = 0x00;
uint8_t switch1 = 0x22;
uint8_t switch2 = 0x1d;
uint8_t env_r = 0x3c;
uint8_t sub = 0x7f;
uint8_t switch1 = 0x3a;
uint8_t switch2 = 0x19;
} patchRam;
#endif
Chorus* chorus;
float vcaTC;
@ -128,7 +152,7 @@ class Voice {
uint8_t envPhase = 0;
int16_t env = 0; // output amplitude
int16_t vcfCut;
uint16_t vcfCut;
int16_t vcaEnv;
float vcaRC = 0, vcfRC = 0;
@ -137,6 +161,7 @@ class Voice {
// filter
float y0 = 0, y1 = 0, y2 = 0, y3 = 0;
double s[4] = {0, 0, 0, 0};
float zi = 0;
};
#endif

View File

@ -41,7 +41,7 @@ Voice::Voice() {
void Voice::on(uint8_t midiNote) {
while (midiNote < 24) midiNote += 12;
while (midiNote > 108) midiNote -=12;
while (midiNote > 108) midiNote -= 12;
note = midiNote - 24;
envPhase = 1;
}
@ -50,45 +50,26 @@ void Voice::off() {
envPhase = 0;
}
// tanh(x)/x approximation, flatline at very high inputs
// so might not be safe for very large feedback gains
// [limit is 1/15 so very large means ~15 or +23dB]
double tanhXdX(double x) {
float s = 0.0333, d = 30.0;
return 1.0f - s * (d + 1.0f) * x * x / (d + x * x);
return 1-0.1*abs(x);
double a = x*x;
// IIRC I got this as Pade-approx for tanh(sqrt(x))/sqrt(x)
return ((a + 105)*a + 945) / ((15*a + 420)*a + 945);
}
void Voice::run(Module* m, float* buffer, uint32_t samples) {
// carry out per-voice calculations for each block of samples
float out, t, fb;
double zi;
// calculate cutoff frequency
float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
float cut = 261.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = M_PI * cut / sampleRate;
cut = cut / (1 + cut); // correct tuning warp
// printf("%f\n", cut);
//if (cut > 0.5) cut = 0.5;
// double f = tan(cut);
//printf("cut = %4f f = %4f\n", cut, f);
double r = (40.0/9.0) * m->res;
cut = cut / (1 + cut); // correct tuning warp
// if (cut > 0.7) cut = 0.7;
double r = 5 * m->res;
float amp = vcaEnv / 4096.0f;
@ -125,46 +106,49 @@ double zi;
// FIXME DC offset removal
delay += m->saw * (1 - (2 * theta));
delay += m->square * ((pulseStage ? -1.f : 1.f) - m->pwmBuf[i] + 0.5);
delay += m->subBuf[i] * subosc ;
delay += m->subBuf[i] * subosc;
out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0);
out *= 0.01;
// out *= 0.1;
// same time constant for both VCF and VCF RC circuits
vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC;
#if 1
//// LICENSE TERMS: Copyright 2012 Teemu Voipio
//
// You can use this however you like for pretty much any purpose,
// as long as you don't claim you wrote it. There is no warranty.
//
// Distribution of substantial portions of this code in source form
// must include this copyright notice and list of conditions.
//
//// LICENSE TERMS: Copyright 2012 Teemu Voipio
//
// You can use this however you like for pretty much any purpose,
// as long as you don't claim you wrote it. There is no warranty.
//
// Distribution of substantial portions of this code in source form
// must include this copyright notice and list of conditions.
//
// input delay and state for member variables
// input delay and state for member variables
// cutoff as normalized frequency (eg 0.5 = Nyquist)
// resonance from 0 to 1, self-oscillates at settings over 0.9
//void transistorLadder(
// double cutoff, double resonance,
// double * in, double * out, unsigned nsamples)
//{
// tuning and feedback
// cutoff as normalized frequency (eg 0.5 = Nyquist)
// resonance from 0 to 1, self-oscillates at settings over 0.9
// void transistorLadder(
// double cutoff, double resonance,
// double * in, double * out, unsigned nsamples)
//{
// tuning and feedback
//------------------------------------------------------------------------------ sample loop
//for(unsigned n = 0; n < nsamples; ++n)
//{
//------------------------------------------------------------------------------ sample loop
// for(unsigned n = 0; n < nsamples; ++n)
//{
out *= 0.025;
// input with half delay, for non-linearities
double ih = 0.5 * (out + zi); zi = out;
double ih = 0.5 * (out + zi);
zi = out;
//double ih = out;
// double ih = out;
// evaluate the non-linear gains
double t0 = tanhXdX((ih * (r+1))- r * s[3]);
double t0 = tanhXdX((ih * (r + 1)) - r * s[3]);
double t1 = tanhXdX(s[0]);
double t2 = tanhXdX(s[1]);
double t3 = tanhXdX(s[2]);
@ -173,37 +157,40 @@ double zi;
double f = vcfRC;
// g# the denominators for solutions of individual stages
double g0 = 1 / (1 + f*t1), g1 = 1 / (1 + f*t2);
double g2 = 1 / (1 + f*t3), g3 = 1 / (1 + f*t4);
// f# are just factored out of the feedback solution
double f3 = f*t3*g3, f2 = f*t2*g2*f3, f1 = f*t1*g1*f2, f0 = f*t0*g0*f1;
double g0 = 1 / (1 + f * t1), g1 = 1 / (1 + f * t2);
double g2 = 1 / (1 + f * t3), g3 = 1 / (1 + f * t4);
// solve feedback
double y3 = (g3*s[3] + f3*g2*s[2] + f2*g1*s[1] + f1*g0*s[0] + f0*out) / (1 + r*f0);
// f# are just factored out of the feedback solution
double f3 = f * t3 * g3, f2 = f * t2 * g2 * f3, f1 = f * t1 * g1 * f2, f0 = f * t0 * g0 * f1;
// solve feedback
double y3 = (g3 * s[3] + f3 * g2 * s[2] + f2 * g1 * s[1] + f1 * g0 * s[0] + f0 * out) / (1 + r * f0);
// then solve the remaining outputs (with the non-linear gains here)
double xx = t0*((out * (r+1)) - r*y3);
double y0 = t1*g0*(s[0] + f*xx);
double y1 = t2*g1*(s[1] + f*y0);
double y2 = t3*g2*(s[2] + f*y1);
double xx = t0 * ((out * (r + 1)) - r * y3);
double y0 = t1 * g0 * (s[0] + f * xx);
double y1 = t2 * g1 * (s[1] + f * y0);
double y2 = t3 * g2 * (s[2] + f * y1);
// update state
s[0] += 2*f * (xx - y0);
s[1] += 2*f * (y0 - y1);
s[2] += 2*f * (y1 - y2);
s[3] += 2*f * (y2 - t4*y3);
s[0] += 2 * f * (xx - y0);
s[1] += 2 * f * (y0 - y1);
s[2] += 2 * f * (y1 - y2);
s[3] += 2 * f * (y2 - t4 * y3);
//out[n] = y3;
// }
// out[n] = y3;
// }
// out *= 0.1;
out = y3;
#else
for (uint8_t ovs = 0; ovs < 4; ovs++) {
out *= 0.5;
for (uint8_t ovs = 0; ovs < 2; ovs++) {
fb = y3;
// hard clip
fb = ((out * 0.5) - fb) * m->res;
fb = ((out * 0.5) - fb) * r;
if (fb > 4) fb = 4;
if (fb < -4) fb = -4;
// fb = 1.5 * fb - 0.5 * fb * fb * fb;
@ -216,8 +203,8 @@ double zi;
}
#endif
vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC;
buffer[i] += 1 * m->vcaBuf[i] * vcaRC * y3;
buffer[i] += m->vcaBuf[i] * vcaRC * out;
lastpw = m->pwmBuf[i];
}
// buffer[0] += 1;