331 lines
8.4 KiB
C++
331 lines
8.4 KiB
C++
|
|
/*
|
|
Chassis polysynth framework
|
|
|
|
Copyright 2024 Gordon JC Pearce <gordonjcp@gjcp.net>
|
|
|
|
Permission to use, copy, modify, and/or distribute this software for any
|
|
purpose with or without fee is hereby granted, provided that the above
|
|
copyright notice and this permission notice appear in all copies.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
// contains the emulation of the digital bits
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
#include "voice.hpp"
|
|
|
|
bool Voice::isFree() {
|
|
return ff10 == false;
|
|
}
|
|
|
|
void Voice::on(uint32_t key, bool reset = 0) {
|
|
// what's with the crazy private variables and all the gotos with crazy labels?
|
|
// this code emulates the 78C11 code directly (probably inefficiently)
|
|
// to allow for documenting what the variables actually do
|
|
// they're really bitfields holding a bit for each voice
|
|
|
|
// this current implementation doesn't reset the voice
|
|
(void)reset;
|
|
|
|
ff10 = true; // note held from keyboard
|
|
ff07 = true; // attack phase
|
|
if (note == key) goto h0144;
|
|
note = key;
|
|
if (ff11) goto h013e;
|
|
h0132:
|
|
if (ff33) goto h0149; // sustained
|
|
ff33 = false;
|
|
goto h0149;
|
|
|
|
h013e:
|
|
ff00 = true; // in a real one, voice counter needs programmed
|
|
goto h0149;
|
|
|
|
h0144:
|
|
if (!ff11) goto h0132; // unsure, copied from ff10 at start of mainloop
|
|
|
|
h0149:
|
|
// this is in the wrong place really but is the equivalent of programming the counter
|
|
// and VCO ramp DAC
|
|
omega = (261.63 * powf(2, (note - 60) / 12.0f)) / 48000.0f;
|
|
}
|
|
|
|
void Voice::off() {
|
|
bool sustain = false;
|
|
ff10 = false;
|
|
if (!sustain) { // dummy sustain
|
|
ff33 = false;
|
|
}
|
|
}
|
|
|
|
void Voice::gate(Synth &s) {
|
|
uint16_t bc, ea = env;
|
|
|
|
ff11 = ff10;
|
|
|
|
// 0509
|
|
if (!ff11) goto h0538;
|
|
|
|
// 050e
|
|
if (!ff33) goto h0563;
|
|
|
|
// 0513
|
|
if (!ff07) goto h051e;
|
|
|
|
h0517:
|
|
ff07 = false;
|
|
|
|
h051e:
|
|
bc = s.patchRam.env_s << 7; // half scale
|
|
|
|
if (ea < bc) ea = bc;
|
|
|
|
ea -= bc;
|
|
bc = ea;
|
|
|
|
ea = (ea * decay_table[s.patchRam.env_d]) >> 16;
|
|
ea += s.patchRam.env_s << 7;
|
|
// printf("returning from decay phase\n");
|
|
goto h0590;
|
|
|
|
h0538:
|
|
// printf("got to 0x0538\n");
|
|
if (!ff07) goto h054a; // note on? if not skip ahead
|
|
// 053c
|
|
if (ff08) goto h0517;
|
|
ff07 = false;
|
|
h054a:
|
|
// printf("release phase\n");
|
|
ff33 = false;
|
|
ff08 = false;
|
|
bc = ea;
|
|
ea = (ea * decay_table[s.patchRam.env_r]) >> 16;
|
|
// printf("returning from release phase\n");
|
|
goto h0590;
|
|
|
|
h0563:
|
|
// printf("attack phase\n");
|
|
ff08 = false;
|
|
ea += attack_table[s.patchRam.env_a];
|
|
if (ea & 0xc000) {
|
|
ea = 0x3fff;
|
|
ff33 = true;
|
|
ff08 = true;
|
|
}
|
|
|
|
h0590:
|
|
env = ea;
|
|
// printf("%04x %d %d %d %d %d \n", ea, ff07, ff08, ff10, ff11, ff33);
|
|
}
|
|
|
|
void Synth::lfoDelay() {
|
|
// compute LFO delay
|
|
|
|
uint16_t a, bc, d, de, ea, tos;
|
|
|
|
// 030d
|
|
if (!keyon /* ff11 */) goto h036b; // skip ahead if no notes are pressed
|
|
|
|
// 0312
|
|
if (!(ff1e & 0x08)) goto h0323; // a note is running, don't reset
|
|
|
|
// 0315 no note is running, reset it all
|
|
bc = 0;
|
|
ff56 = 0; // delay envelope
|
|
ff5a = 0; // holdoff timer
|
|
ff1e &= 0xf1; // mask bits in flag byte
|
|
|
|
h0323:
|
|
if (!(ff1e & 0x02)) goto h0370; // compute delay envelope
|
|
if (!(ff1e & 0x04)) goto h0388; // compute holdoff timer
|
|
|
|
// 032b
|
|
bc |= 0xff00; // initial scaling value?
|
|
|
|
//printf("0323 ");
|
|
|
|
h032d:
|
|
tos = bc; // push bc
|
|
|
|
// 032e
|
|
a = lfoDepthTable[patchRam.vcoLfo];
|
|
|
|
// MUL B; MOV A, EAH
|
|
a = (a * (bc >> 8)) >> 8;
|
|
|
|
// 0333 ADDNCW $0064; MVI A, $FF
|
|
a += ff64;
|
|
if (a > 0xff) a = 0xff;
|
|
|
|
// 0338 sets up HL to store computed pitch LFO output
|
|
|
|
// 33b
|
|
bc = ff4d; // current LFO output
|
|
|
|
// printf("-----------------------%02x %04x\n", a, bc);
|
|
|
|
// 033f
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
d = a; // MOV D,A
|
|
a = (ea >> 8); // MOV A,EAH
|
|
bc &= 0xff00; bc |= a; // MOV C,A
|
|
a = d; // MOV A,D
|
|
|
|
// 0345
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA, C
|
|
|
|
// 0349
|
|
ea >>= 3; // divide by eight
|
|
|
|
// 034f
|
|
ff51 = ea; // save scaled pitch LFO
|
|
|
|
bc = tos; // pop BC, contains scaling amount
|
|
a = patchRam.vcfLfo << 1; // amount is doubled and stored at ff48
|
|
|
|
// 0354
|
|
ea = (bc >> 8) * a; // MUL B
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc = ff4d; // current LFO output
|
|
|
|
// 035b
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
d = a; // MOV D,A
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc &= 0xff00; bc |= a; // MOV C,A
|
|
a = d; // MOV A,D
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA,C
|
|
ea >>= 1; // DSLR A
|
|
ff53 = ea; // save scaled VCF LFO
|
|
goto h03a1;
|
|
|
|
h036b:
|
|
ff1e |= 0x08; // set LFO flag
|
|
goto h0323;
|
|
|
|
h0370: // calculate holdoff time
|
|
//printf("0370 ");
|
|
ea = ff56; // holdoff time
|
|
bc = attackTable[patchRam.lfoDelay]; // stored at ff58
|
|
// 0379
|
|
ea += bc; // DADD EA,BC
|
|
ff56 = ea; // STEAX (DE) which still holds ff56 from 0x370
|
|
|
|
a = ea >> 8; // MOV A, EAH
|
|
if (a & 0xc0) goto h0385; // OFFI A, $C0
|
|
bc &= 0xff; // MOV B, 0
|
|
goto h032d;
|
|
h0385:
|
|
ff1e |= 0x02; // stop predelay flag
|
|
|
|
h0388:
|
|
//printf("0388 ");
|
|
ea = ff5a; // envelope speed
|
|
|
|
// 038d
|
|
bc = lfoDelayTable[patchRam.lfoDelay >> 4]; // delay setting divided by 8 and saved at ff6c
|
|
|
|
//printf("---------------------------------------- %04x %04x\n", ea, bc);
|
|
|
|
// 0391 DADDNC EA, BC
|
|
if ((ea + bc) > 0xffff) goto h039a;
|
|
ea += bc;
|
|
|
|
// 394
|
|
ff5a = ea; // STEAX (HL) hl still contains ff5a
|
|
|
|
bc |= (ea & 0xff00); // MOV A, EAH; MOV B, A
|
|
goto h032d;
|
|
|
|
h039a:
|
|
ff1e |= 0x04;
|
|
bc |= 0xff; // MVI B, $ff
|
|
goto h032d;
|
|
|
|
h03a1:
|
|
//printf("LFO=%04x VCF=%04x flags=%02x holdoff=%04x envelope=%04x\n", ff51, ff53, ff1e, ff56, ff5a);
|
|
return;
|
|
}
|
|
|
|
void Synth::runLFO() {
|
|
// compute a loop's worth of LFO
|
|
|
|
uint16_t bc, ea;
|
|
|
|
// 074e
|
|
ea = ff4d; // lfo value
|
|
bc = lfoRateTable[patchRam.lfoRate];
|
|
|
|
// bit zero is low for rising slope, high for falling
|
|
if (!(ff4a & 0x01)) goto h078b;
|
|
|
|
// 075b DSUBNB EA, BC subtract BC from EA, skip next instruction if EA < BC
|
|
// 075d JRE 079a routine that handles flipping from down to up
|
|
ea -= bc;
|
|
if (ea < bc) goto h079a;
|
|
|
|
h075f:
|
|
ff4d = ea; // LFO output variable
|
|
|
|
// bit one seems to be used to represent negative values of LFO
|
|
if (!(ff4a & 0x02)) goto h07a2; // routine that adds on 0x2000 to ea
|
|
|
|
// 0765 LFO is negative (bit 1 is high) so invert the value of EA
|
|
// so that we have a positive-only LFO running from 0 to 0x3fff
|
|
bc = ea;
|
|
ea = 0x2000;
|
|
ea -= bc;
|
|
h076b:
|
|
bc = ea; // BC now contains an LFO range from 0 to 0x3fff, always positive
|
|
if (patchRam.switch2 & 0x01) { // LFO Manual?
|
|
bc = 0x3fff; // fixed maximum value
|
|
}
|
|
|
|
// 0771
|
|
bc = (bc * patchRam.pwmLfo) >> 7; // scale by PWM pot amount
|
|
|
|
// 077d
|
|
bc = 0x3fff - bc; // invert so pot = 0 gives 0x3fff
|
|
|
|
// test if squarewave is on or off - if it's off set PW to 0
|
|
if (!(patchRam.switch1 & 0x08)) bc = 0x0000; // square off
|
|
|
|
// final computed PWM value
|
|
ff4f = bc;
|
|
|
|
// 078a
|
|
goto h07a9;
|
|
|
|
h078b:
|
|
// BC contains rate, EA contains LFO value
|
|
ea += bc;
|
|
if (ea & 0xe000) { // if we've exceeded 0x1fff
|
|
ea = 0x1fff; // clamp
|
|
ff4a++; // increment the flags
|
|
}
|
|
goto h075f; // store in LFO output variable
|
|
|
|
h079a:
|
|
ea = 0; // output is close (enough) to zero, clamp
|
|
ff4a++; // increment the flags
|
|
goto h075f; // store in LFO output variable
|
|
|
|
h07a2: // LFO output is positive
|
|
ea += 0x2000; // add on 0x2000 to scale PWM to 0 - 0x3fff
|
|
goto h076b; // jump back to scale LFO amount
|
|
|
|
h07a9:
|
|
return;
|
|
} |