chassis/plugin/digital.cpp

200 lines
5.1 KiB
C++
Raw Normal View History

2024-09-08 23:55:14 +00:00
/*
Chassis polysynth framework
Copyright 2024 Gordon JC Pearce <gordonjcp@gjcp.net>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// contains the emulation of the digital bits
#include <cmath>
2024-09-08 23:55:14 +00:00
#include <cstdio>
#include "voice.hpp"
bool Voice::isFree() {
return ff10 == false;
}
void Voice::on(uint32_t key, bool reset = 0) {
// what's with the crazy private variables and all the gotos with crazy labels?
// this code emulates the 78C11 code directly (probably inefficiently)
// to allow for documenting what the variables actually do
// they're really bitfields holding a bit for each voice
// this current implementation doesn't reset the voice
(void)reset;
ff10 = true; // note held from keyboard
ff07 = true; // attack phase
if (note == key) goto h0144;
note = key;
if (ff11) goto h013e;
h0132:
if (ff33) goto h0149; // sustained
ff33 = false;
goto h0149;
h013e:
ff00 = true; // in a real one, voice counter needs programmed
goto h0149;
h0144:
if (!ff11) goto h0132; // unsure, copied from ff10 at start of mainloop
h0149:
// this is in the wrong place really but is the equivalent of programming the counter
// and VCO ramp DAC
omega = (261.63 * powf(2, (note - 60) / 12.0f)) / 48000.0f;
}
void Voice::off() {
bool sustain = false;
ff10 = false;
if (!sustain) { // dummy sustain
ff33 = false;
}
}
void Voice::gate(Synth &s) {
uint16_t bc, ea = env;
ff11 = ff10;
// 0509
if (!ff11) goto h0538;
// 050e
if (!ff33) goto h0563;
// 0513
if (!ff07) goto h051e;
h0517:
ff07 = false;
h051e:
bc = s.patchRam.env_s << 7; // half scale
if (ea < bc) ea = bc;
ea -= bc;
bc = ea;
ea = (ea * decay_table[s.patchRam.env_d]) >> 16;
ea += s.patchRam.env_s << 7;
// printf("returning from decay phase\n");
goto h0590;
h0538:
// printf("got to 0x0538\n");
if (!ff07) goto h054a; // note on? if not skip ahead
// 053c
if (ff08) goto h0517;
ff07 = false;
h054a:
// printf("release phase\n");
ff33 = false;
ff08 = false;
bc = ea;
ea = (ea * decay_table[s.patchRam.env_r]) >> 16;
// printf("returning from release phase\n");
goto h0590;
h0563:
// printf("attack phase\n");
ff08 = false;
ea += attack_table[s.patchRam.env_a];
if (ea & 0xc000) {
ea = 0x3fff;
ff33 = true;
ff08 = true;
}
h0590:
env = ea;
// printf("%04x %d %d %d %d %d \n", ea, ff07, ff08, ff10, ff11, ff33);
}
2024-09-08 23:55:14 +00:00
void Synth::runLFO() {
// compute a loop's worth of LFO
2024-09-09 07:51:37 +00:00
uint16_t bc, ea;
2024-09-08 23:55:14 +00:00
// 074e
ea = ff4d; // lfo value
bc = lfoRateTable[patchRam.lfoRate];
2024-09-09 07:51:37 +00:00
// bit zero is low for rising slope, high for falling
2024-09-08 23:55:14 +00:00
if (!(ff4a & 0x01)) goto h078b;
2024-09-09 07:51:37 +00:00
// 075b DSUBNB EA, BC subtract BC from EA, skip next instruction if EA < BC
// 075d JRE 079a routine that handles flipping from down to up
2024-09-08 23:55:14 +00:00
ea -= bc;
if (ea < bc) goto h079a;
2024-09-09 07:51:37 +00:00
2024-09-08 23:55:14 +00:00
h075f:
2024-09-09 07:51:37 +00:00
ff4d = ea; // LFO output variable
// bit one seems to be used to represent negative values of LFO
if (!(ff4a & 0x02)) goto h07a2; // routine that adds on 0x2000 to ea
2024-09-08 23:55:14 +00:00
2024-09-09 07:51:37 +00:00
// 0765 LFO is negative (bit 1 is high) so invert the value of EA
// so that we have a positive-only LFO running from 0 to 0x3fff
2024-09-08 23:55:14 +00:00
bc = ea;
ea = 0x2000;
ea -= bc;
h076b:
2024-09-09 07:51:37 +00:00
bc = ea; // BC now contains an LFO range from 0 to 0x3fff, always positive
if (patchRam.switch2 & 0x01) { // LFO Manual?
bc = 0x3fff; // fixed maximum value
2024-09-08 23:55:14 +00:00
}
2024-09-09 07:51:37 +00:00
// 0771
bc = (bc * patchRam.pwmLfo) >> 7; // scale by PWM pot amount
// 077d
bc = 0x3fff - bc; // invert so pot = 0 gives 0x3fff
// test if squarewave is on or off - if it's off set PW to 0
if (!(patchRam.switch1 & 0x08)) bc = 0x0000; // square off
// final computed PWM value
2024-09-08 23:55:14 +00:00
ff4f = bc;
// 078a
goto h07a9;
h078b:
2024-09-09 07:51:37 +00:00
// BC contains rate, EA contains LFO value
2024-09-08 23:55:14 +00:00
ea += bc;
2024-09-09 07:51:37 +00:00
if (ea & 0xe000) { // if we've exceeded 0x1fff
ea = 0x1fff; // clamp
ff4a++; // increment the flags
2024-09-08 23:55:14 +00:00
}
2024-09-09 07:51:37 +00:00
goto h075f; // store in LFO output variable
2024-09-08 23:55:14 +00:00
h079a:
2024-09-09 07:51:37 +00:00
ea = 0; // output is close (enough) to zero, clamp
ff4a++; // increment the flags
goto h075f; // store in LFO output variable
2024-09-08 23:55:14 +00:00
2024-09-09 07:51:37 +00:00
h07a2: // LFO output is positive
ea += 0x2000; // add on 0x2000 to scale PWM to 0 - 0x3fff
goto h076b; // jump back to scale LFO amount
2024-09-08 23:55:14 +00:00
h07a9:
return;
}