#include "generator.hpp" /* sonnenlicht poly ensemble Copyright 2024 Gordon JC Pearce Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "DistrhoPluginInfo.h" #include "svf.hpp" extern double sampleRate; extern uint32_t bufferSize; // unit-local global static float envTc[2]; // Generator::Generator(uint32_t bufferSize, double xSampleRate) { Generator::Generator() { // sampleRate = xSampleRate; output = new float[bufferSize]; // create the phase increments for each semitone for (uint8_t i = 0; i < 12; i++) { phase[i] = 0; uint32_t f; f = (1 << 31) * (32.703 * powf(2, 0.083334 * i) / sampleRate); omega[i] = f; } // output filters // trumpet 4200 2.5 // horn 1500 2.5 tr2 = SVF(9500.0f, 0.707f); setEnvelope(0.5, 0.5); } Generator::~Generator() { delete output; } void Generator::runBlock(uint32_t frames) { Voice *v; uint32_t i; uint8_t k, p, d; float n; memset(output, 0, frames * sizeof(float)); for (i = 0; i < frames; i++) { for (p = 0; p < 12; p++) { phase[p] += omega[p]; } for (k = 0; k < NUM_VOICES; k++) { v = &voices[k]; d = (phase[v->semi] & (0x20000000 >> v->oct)) != 0; n = d ? 0.25 : -0.25; v->vc34 = ((n - v->vc34) * v->c34) + v->vc34; n -= v->vc34; n *= d ? 1 : 0; v->vc78 = ((n - v->vc78) * v->c78) + v->vc78; v->vc107 = ((v->vc78 - v->vc107) * v->c107) + v->vc107; d = (phase[v->semi] & (0x40000000 >> v->oct)) != 0; n = d ? 0.25 : -0.25; v->vc33 = ((n - v->vc33) * v->c33) + v->vc33; n -= v->vc33; n *= d ? 1 : 0; v->vc22 = ((n - v->vc22) * v->c22) + v->vc22; v->vc31 = ((v->vc22 - v->vc31) * v->c31) + v->vc31; v->vca = ((v->gate - v->vca) * envTc[v->vcatc]) + v->vca; float v4 = (v->vc78 - v->vc107); float v8 = (v->vc22 - v->vc31); output[i] += 0.25 * (v4 + v8) * v->vca; } } tr2.runSVF(output, output, frames); } void Voice::startNote(uint8_t key) { // start a new note // violin and viola filter params float fc = 88.4 * powf(2, 0.083334 * (key - 24)); c34 = 1 - exp(-6.283 * fc / sampleRate); c33 = 1 - exp(-6.283 * fc / 2 / sampleRate); // violin register fc = 4000 + 65.8 * powf(2, 0.08 * (key - 24)); c78 = 1 - exp(-6.283 * fc / sampleRate); c107 = 1 - exp(-6.283 * 154.0 / sampleRate); // viola register fc = 3000 + 65.8 * powf(2, 0.07 * (key - 24)); c22 = 1 - exp(-6.283 * fc / sampleRate); c31 = 1 - exp(-6.283 * 150.0 / sampleRate); gate = 1; vcatc = 0; semi = key % 12, oct = (key / 12 - 3); } void Voice::stopNote() { gate = 0; vcatc = 1; } void Generator::setEnvelope(float attack, float sustain) { envTc[0] = ((96 * powf(100, -attack)) / sampleRate); envTc[1] = ((48 * powf(100, -sustain)) / sampleRate); }