/* sonnenlicht poly ensemble Copyright 2025 Gordon JC Pearce Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "chorus.hpp" #include #include #include extern double sampleRate; extern uint32_t bufferSize; Chorus::Chorus() { // no parameters, programs, or states lpfOut1 = new float[bufferSize]; lpfOut2 = new float[bufferSize]; ram = new float[DELAYSIZE]; // probably needs to be calculated based on sample rate fastPhase = 0; slowPhase = 0; postFilter1l = new SVF(POSTCUTOFF, .546); postFilter2l = new SVF(POSTCUTOFF, 1.324); postFilter1r = new SVF(POSTCUTOFF, .546); postFilter2r = new SVF(POSTCUTOFF, 1.324); // lfo values taken from a rough simulation fastOmega = 6.283 * 5.7 / sampleRate; // approximate, can be adjusted slowOmega = 6.283 * 0.7 / sampleRate; // again approximate // zero out the delay buffer memset(ram, 0, sizeof(float) * DELAYSIZE); memset(lpfOut1, 0, sizeof(float) * bufferSize); memset(lpfOut2, 0, sizeof(float) * bufferSize); } Chorus::~Chorus() { delete lpfOut1; delete lpfOut2; delete ram; delete postFilter1l; delete postFilter2l; delete postFilter1r; delete postFilter2r; } void Chorus::run(const float *input, float **outputs, uint32_t frames) { // actual effects here // now run the DSP float out0 = 0, out120 = 0, out240 = 0, s0 = 0, s1 = 0; float lfoMod, dly1, frac; uint16_t tap, delay; for (uint32_t i = 0; i < frames; i++) { // run a step of LFO fastPhase += fastOmega; if (fastPhase > 6.283) fastPhase -= 6.283; slowPhase += slowOmega; if (slowPhase > 6.283) slowPhase -= 6.283; ram[delayptr] = input[i]; #define BASE 0.05 #define AMT 0.00175 // 0 degree delay line lfoMod = 0.203 * sin(fastPhase) + 0.835 * sin(slowPhase); dly1 = (BASE + (AMT * lfoMod)) * sampleRate; delay = (int)dly1; frac = dly1 - delay; tap = delayptr - delay; s1 = ram[(tap - 1) & 0x3ff]; s0 = ram[tap & 0x3ff]; out0 = ((s1 - s0) * frac) + s0; // 120 degree delay line lfoMod = 0.248 * sin(fastPhase + 2.09) + 0.745 * sin(slowPhase + 2.09); dly1 = (BASE + (AMT * lfoMod)) * sampleRate; delay = (int)dly1; frac = dly1 - delay; tap = delayptr - delay; s1 = ram[(tap - 1) & 0x3ff]; s0 = ram[tap & 0x3ff]; out120 = ((s1 - s0) * frac) + s0; // 240 degree delay line lfoMod = 0.252 * sin(fastPhase + 4.18) + 0.809 * sin(slowPhase + 4.18); dly1 = (BASE + (AMT * lfoMod)) * sampleRate; delay = (int)dly1; frac = dly1 - delay; tap = delayptr - delay; s1 = ram[(tap - 1) & 0x3ff]; s0 = ram[tap & 0x3ff]; out240 = ((s1 - s0) * frac) + s0; lpfOut1[i] = (out0 + (out120 * 0.66) + (out240 * 0.33)); lpfOut2[i] = (out0 + (out120 * 0.33) + (out240 * 0.66)); delayptr++; delayptr &= 0x3ff; } postFilter1l->runSVF(lpfOut1, lpfOut1, frames); postFilter2l->runSVF(lpfOut1, outputs[0], frames); postFilter1r->runSVF(lpfOut2, lpfOut2, frames); postFilter2r->runSVF(lpfOut2, outputs[1], frames); }