peacock/plugin/module.cpp

196 lines
6.6 KiB
C++

/*
Peacock-8 VA polysynth
Copyright 2025 Gordon JC Pearce <gordonjcp@gjcp.net>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "module.hpp"
#include <math.h>
#include <stdio.h>
#include "tables.hpp"
Module::Module() {
// cutoff frequencies for various RC networks
vcaTC = 1 - exp(-M_PI * 159 / sampleRate); // VCA and VCF 10k/0.1u time constant
subTC = 1 - exp(-M_PI * 15 / sampleRate); // Main VCA and Sub Level 1k + 10u time constant
pwmTC = 1 - exp(-M_PI * 40 / sampleRate); // integrator with 100k/0.047u time constant
vcaBuf = new float[bufferSize];
subBuf = new float[bufferSize];
pwmBuf = new float[bufferSize];
noiseBuf = new float[bufferSize];
}
Module::~Module() {
printf("module destructor\n");
delete vcaBuf;
delete subBuf;
delete pwmBuf;
}
void Module::genNoise() {
for (uint32_t i = 0; i < bufferSize; i++) {
noiseRNG *= 0x8088405;
noiseRNG++;
noiseBuf[i] = 2 - (noiseRNG & 0xffff) / 16384.0f;
}
}
void Module::lfoRampOn() {
lfoDelayState = 1;
lfoDelayTimer = 0;
lfoDelay = 0;
}
void Module::runLFO() {
if (lfoDelayState == 1) {
lfoDelayTimer += attackTable[patchRam.lfoDelay];
if (lfoDelayTimer > 0x3fff) lfoDelayState = 2;
}
if ((lfoDelayState == 2)) {
lfoDelay += lfoDelayTable[patchRam.lfoDelay >> 4];
}
if (lfoDelay > 0xff) {
lfoDelayState = 0;
lfoDelay = 0xff;
}
lfoRate = lfoRateTable[patchRam.lfoRate]; // FIXME move to parameters
lfoPhase += (lfoState & 0x01) ? -lfoRate : lfoRate;
if (lfoPhase > 0x1fff) {
lfoPhase = 0x1fff;
lfoState++;
}
if (lfoPhase < 0x0000) {
lfoPhase = 0x0000;
lfoState++;
}
lfo = (lfoState & 0x02) ? -lfoPhase : lfoPhase;
pw = (lfoState & 0x02) ? lfoPhase + 0x2000 : 0x2000 - lfoPhase; // PW LFO is unipolar
pw = (patchRam.switch2 & 0x01) ? 0x3fff : pw; // either LFO or "all on"
pw = 0x3fff - ((pw * patchRam.pwmLfo) >> 7); // scaled by PWM pot
}
void Module::run(Voice* voices, uint32_t blockSize) {
// run updates for module board
int16_t lfoToVco = 0, lfoToVcf = 0;
// FIXME break these out to the patch setter
a = attackTable[patchRam.env_a]; // attack time coeff looked up in table
d = decayTable[patchRam.env_d]; // decay time coeff looked up in table
r = decayTable[patchRam.env_r]; // release time coeff looked up in table
s = patchRam.env_s << 7; // scale 0x00-0x7f to 0x0000-0x3f80
master = powf(2, (patchRam.vca / 31.75 - 4.0f)) * 0.1;
// originally I had 0.28, 0.36, 0.4
// measurement suggests that saw and square are around 100mV each with sub 160mV
square = (patchRam.switch1 & 0x08) ? 1 : 0;
saw = (patchRam.switch1 & 0x10) ? 1 : 0;
sub = (patchRam.sub / 127.0f) * 1.6;
res = patchRam.vcfReso / 127.0;
noise = (patchRam.noise / 127.0);
// FIXME the exp in these is expensive, don't call it all the time
chorus->setChorus(patchRam.switch1 & 0x60);
chorus->setHpf(patchRam.switch2 & 0x18);
runLFO();
// calculate "smoothed" parameters
// these are single outputs with heavy RC smoothing
for (uint32_t i = 0; i < blockSize; i++) {
vcaRC = (master - vcaRC) * subTC + vcaRC;
pwmRC = ((pw / 32768.0f) - pwmRC) * pwmTC + pwmRC;
subRC = (sub - subRC) * vcaTC + subRC;
vcaBuf[i] = vcaRC;
pwmBuf[i] = pwmRC;
subBuf[i] = subRC;
if (bufPtr < bufferSize) bufPtr++;
}
lfoToVco = (lfoDepthTable[patchRam.vcoLfo] * lfoDelay) >> 8; // lookup table is 0-255
lfoToVco += /* lfo from modwheel FIXME */ 0;
if (lfoToVco > 0xff) lfoToVco = 0xff;
lfoToVco = (lfo * lfoToVco) >> 11; // 8 for normalisation plus three additional DSLR EA
lfoToVcf = (patchRam.vcfLfo * lfoDelay) >> 7; // value is 0-127
lfoToVcf = (lfo * lfoToVcf) >> 9; // 8 for normalisation plus one additional DSLR EA
int16_t pitchBase = 0x1818, vcfBase = 0;
pitchBase += lfoToVco;
pitchBase += /* pitch bend FIXME */ 0;
// int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1);
vcfBase = (patchRam.vcfFreq << 7) + /* vcf bend FIXME */ 0;
vcfBase += lfoToVcf;
if (vcfBase > 0x3fff) vcfBase = 0x3fff;
if (vcfBase < 0x0000) vcfBase = 0x0000;
// per-voice calculations
for (uint32_t i = 0; i < NUM_VOICES; i++) {
// run one step of the envelope
Voice* v = &voices[i];
switch (v->envPhase) {
case 0: // release phase FIXME use an enum I guess
v->env = (v->env * r) >> 16; // "RC" decay to zero
break;
case 1: // attack phase
v->env += a; // linear attack to 0x3fff
break;
case 2:
v->env = (((v->env - s) * d) >> 16) + s;
break;
}
if (v->env > 0x3fff) {
v->env = 0x3fff;
v->envPhase = 2; // flip to decay
}
// pitch
uint16_t pitch = pitchBase + (v->note << 8);
uint8_t semi = pitch >> 8;
float frac = (pitch & 0xff) / 256.0;
float p1 = pitchTable[semi], p2 = pitchTable[semi + 1];
int16_t px = ((p2 - p1) * frac + p1); // interpolated pitch from table
// octave divider
px *= (patchRam.switch1 & 0x07);
v->omega = px / (sampleRate * 8.0f); // FIXME recalculate table using proper scaler
// per voice we need to calculate the key follow amount and envelope amount
v->vcfCut = vcfBase + (((v->env * patchRam.vcfEnv)>>7) * ((patchRam.switch2 & 0x02) ? -1 : 1));
v->vcfCut += (int)((v->note - 36) * (patchRam.vcfKey << 1) * 0.375);
if (v->vcfCut > 0x3fff) v->vcfCut = 0x3fff;
if (v->vcfCut < 0) v->vcfCut = 0;
v->vcaEnv = (patchRam.switch2 & 0x04) ? (v->envPhase ? 0x3fff : 0) : v->env;
}
}