Compare commits

...

4 Commits

Author SHA1 Message Date
Gordon JC Pearce e3c54e3ef1 noise level 2026-01-08 15:29:10 +00:00
Gordon JC Pearce 8ca166a662 fix level 2026-01-08 15:27:14 +00:00
Gordon JC Pearce a3a2e0dd04 fix lfo and pitch calculation 2026-01-06 22:16:39 +00:00
Gordon JC Pearce 7ff0bf0659 better LFO and PW 2026-01-06 20:20:30 +00:00
3 changed files with 59 additions and 34 deletions

View File

@ -140,7 +140,7 @@ void Chorus::setHpf(uint8_t mode) {
break; break;
case 0x18: case 0x18:
hpCut = 1 - exp(-6.283 * 85 / sampleRate); hpCut = 1 - exp(-6.283 * 85 / sampleRate);
hpGain = 1.707; hpGain = 1.0;
break; break;
} }
} }

View File

@ -46,7 +46,7 @@ void Module::genNoise() {
for (uint32_t i = 0; i < bufferSize; i++) { for (uint32_t i = 0; i < bufferSize; i++) {
noiseRNG *= 0x8088405; noiseRNG *= 0x8088405;
noiseRNG++; noiseRNG++;
noiseBuf[i] = 2 - (noiseRNG & 0xffff) / 16384.0f; noiseBuf[i] = 1 - (noiseRNG & 0xffff) / 32768.0f;
} }
} }
@ -58,32 +58,41 @@ void Module::lfoRampOn() {
void Module::runLFO() { void Module::runLFO() {
if (lfoDelayState == 1) { if (lfoDelayState == 1) {
lfoDelayTimer += lfoDelayTable[patchRam.lfoDelay >> 4]; lfoDelayTimer += attackTable[patchRam.lfoDelay];
if (lfoDelayTimer & 0xc000) lfoDelayState = 2; if (lfoDelayTimer > 0x3fff) lfoDelayState = 2;
} }
if ((lfoDelayState == 2)) { if ((lfoDelayState == 2)) {
lfoDelay += attackTable[patchRam.lfoDelay]; lfoDelay += lfoDelayTable[patchRam.lfoDelay >> 4];
} }
if (lfoDelay & 0xc000) { if (lfoDelay > 0xff) {
lfoDelayState = 0; lfoDelayState = 0;
lfoDelay = 0x3fff; lfoDelay = 0xff;
} }
lfoPhase += lfoRateTable[patchRam.lfoRate]; lfoRate = lfoRateTable[patchRam.lfoRate]; // FIXME move to parameters
if (lfoPhase & 0x4000)
lfo = 0x1fff - (lfoPhase & 0x3fff);
else
lfo = (lfoPhase & 0x3fff) - 0x1fff;
pw = 0x3fff - (((0x2000 + lfo) * patchRam.pwmLfo) >> 7); lfoPhase += (lfoState & 0x01) ? -lfoRate : lfoRate;
pw = (patchRam.switch2 & 0x01) ? 0x3fff - (patchRam.pwmLfo << 7) : pw; if (lfoPhase > 0x1fff) {
lfo = (lfo * lfoDelay) >> 14; lfoPhase = 0x1fff;
lfoState++;
}
if (lfoPhase < 0x0000) {
lfoPhase = 0x0000;
lfoState++;
}
lfo = (lfoState & 0x02) ? -lfoPhase : lfoPhase;
pw = (lfoState & 0x02) ? lfoPhase + 0x2000 : 0x2000 - lfoPhase; // PW LFO is unipolar
pw = (patchRam.switch2 & 0x01) ? 0x3fff : pw; // either LFO or "all on"
pw = 0x3fff - ((pw * patchRam.pwmLfo) >> 7); // scaled by PWM pot
} }
void Module::run(Voice* voices, uint32_t blockSize) { void Module::run(Voice* voices, uint32_t blockSize) {
// run updates for module board // run updates for module board
int16_t lfoToVco = 0, lfoToVcf = 0;
// FIXME break these out to the patch setter // FIXME break these out to the patch setter
a = attackTable[patchRam.env_a]; // attack time coeff looked up in table a = attackTable[patchRam.env_a]; // attack time coeff looked up in table
d = decayTable[patchRam.env_d]; // decay time coeff looked up in table d = decayTable[patchRam.env_d]; // decay time coeff looked up in table
@ -108,10 +117,11 @@ void Module::run(Voice* voices, uint32_t blockSize) {
runLFO(); runLFO();
float pwf = pw / 32768.0f; // calculate "smoothed" parameters
// these are single outputs with heavy RC smoothing
for (uint32_t i = 0; i < blockSize; i++) { for (uint32_t i = 0; i < blockSize; i++) {
vcaRC = (master - vcaRC) * subTC + vcaRC; vcaRC = (master - vcaRC) * subTC + vcaRC;
pwmRC = (pwf - pwmRC) * pwmTC + pwmRC; pwmRC = ((pw / 32768.0f) - pwmRC) * pwmTC + pwmRC;
subRC = (sub - subRC) * vcaTC + subRC; subRC = (sub - subRC) * vcaTC + subRC;
vcaBuf[i] = vcaRC; vcaBuf[i] = vcaRC;
@ -121,13 +131,27 @@ void Module::run(Voice* voices, uint32_t blockSize) {
if (bufPtr < bufferSize) bufPtr++; if (bufPtr < bufferSize) bufPtr++;
} }
int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1); lfoToVco = (lfoDepthTable[patchRam.vcoLfo] * lfoDelay) >> 8; // lookup table is 0-255
lfoToVco += /* lfo from modwheel FIXME */ 0;
if (lfoToVco > 0xff) lfoToVco = 0xff;
lfoToVco = (lfo * lfoToVco) >> 11; // 8 for normalisation plus three additional DSLR EA
int16_t pitchBase = 0x1818; lfoToVcf = (patchRam.vcfLfo * lfoDelay) >> 7; // value is 0-127
pitchBase += (lfo * lfoDepthTable[patchRam.vcoLfo]) >> 11; lfoToVcf = (lfo * lfoToVcf) >> 9; // 8 for normalisation plus one additional DSLR EA
int16_t pitchBase = 0x1818, vcfBase = 0;
pitchBase += lfoToVco;
pitchBase += /* pitch bend FIXME */ 0;
// int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1);
vcfBase = (patchRam.vcfFreq << 7) + /* vcf bend FIXME */ 0;
vcfBase += lfoToVcf;
if (vcfBase > 0x3fff) vcfBase = 0x3fff;
if (vcfBase < 0x0000) vcfBase = 0x0000;
// per-voice calculations
for (uint32_t i = 0; i < NUM_VOICES; i++) { for (uint32_t i = 0; i < NUM_VOICES; i++) {
// maybe move all this into voice.cpp FIXME // run one step of the envelope
Voice* v = &voices[i]; Voice* v = &voices[i];
switch (v->envPhase) { switch (v->envPhase) {
case 0: // release phase FIXME use an enum I guess case 0: // release phase FIXME use an enum I guess
@ -146,21 +170,20 @@ void Module::run(Voice* voices, uint32_t blockSize) {
} }
// pitch // pitch
// FIXME clean this all up a bit uint16_t pitch = pitchBase + (v->note << 8);
int16_t pitch = pitchBase + (v->note << 8); uint8_t semi = pitch >> 8;
int16_t semi = pitch >> 8;
float frac = (pitch & 0xff) / 256.0; float frac = (pitch & 0xff) / 256.0;
float p1 = pitchTable[semi], p2 = pitchTable[semi + 1]; float p1 = pitchTable[semi], p2 = pitchTable[semi + 1];
int16_t px = ((p2 - p1) * frac + p1); int16_t px = ((p2 - p1) * frac + p1); // interpolated pitch from table
// octave divider
px *= (patchRam.switch1 & 0x07); px *= (patchRam.switch1 & 0x07);
v->omega = px / (sampleRate * 8.0f); // fixme use proper scaler v->omega = px / (sampleRate * 8.0f); // FIXME recalculate table using proper scaler
// per voice we need to calculate the key follow amount and envelope amount // per voice we need to calculate the key follow amount and envelope amount
v->vcfCut = (patchRam.vcfFreq << 7) + ((vcf * v->env) >> 14); v->vcfCut = vcfBase + (((v->env * patchRam.vcfEnv)>>7) * ((patchRam.switch1 & 0x02) ? -1 : 1));
v->vcfCut += (lfo * patchRam.vcfLfo) >> 9;
v->vcfCut += (int)((v->note - 36) * (patchRam.vcfKey << 1) * 0.375); v->vcfCut += (int)((v->note - 36) * (patchRam.vcfKey << 1) * 0.375);

View File

@ -130,7 +130,9 @@ class Module {
float pwmRC = 0, subRC = 0, vcaRC = 0; float pwmRC = 0, subRC = 0, vcaRC = 0;
int16_t lfo, pw; int16_t lfo, pw;
uint32_t lfoPhase; int16_t lfoPhase;
uint8_t lfoState = 0;
uint16_t lfoRate;
uint32_t noiseRNG = 1; uint32_t noiseRNG = 1;
@ -154,11 +156,11 @@ class Voice {
uint8_t pulseStage = 1; // pulse wave phase uint8_t pulseStage = 1; // pulse wave phase
float subosc = 1; // sub oscillator flipflop output float subosc = 1; // sub oscillator flipflop output
uint8_t envPhase = 0; uint8_t envPhase = 0; // current running state of envelope
int16_t env = 0; // output amplitude int16_t env = 0; // calculated envelope amount
uint16_t vcfCut; int16_t vcfCut; // calculated cutoff to filter
int16_t vcaEnv; int16_t vcaEnv; // calculated level to VCA (env/gate)
float vcaRC = 0, vcfRC = 0; float vcaRC = 0, vcfRC = 0; // RC circuit state values
uint8_t note = 0; uint8_t note = 0;