diff --git a/plugin/module.cpp b/plugin/module.cpp index c2405b0..c174ec9 100644 --- a/plugin/module.cpp +++ b/plugin/module.cpp @@ -58,16 +58,16 @@ void Module::lfoRampOn() { void Module::runLFO() { if (lfoDelayState == 1) { - lfoDelayTimer += lfoDelayTable[patchRam.lfoDelay >> 4]; - if (lfoDelayTimer & 0xc000) lfoDelayState = 2; + lfoDelayTimer += attackTable[patchRam.lfoDelay]; + if (lfoDelayTimer > 0x3fff) lfoDelayState = 2; } if ((lfoDelayState == 2)) { - lfoDelay += attackTable[patchRam.lfoDelay]; + lfoDelay += lfoDelayTable[patchRam.lfoDelay >> 4]; } - if (lfoDelay & 0xc000) { + if (lfoDelay > 0xff) { lfoDelayState = 0; - lfoDelay = 0x3fff; + lfoDelay = 0xff; } lfoRate = lfoRateTable[patchRam.lfoRate]; // FIXME move to parameters @@ -83,15 +83,16 @@ void Module::runLFO() { } lfo = (lfoState & 0x02) ? -lfoPhase : lfoPhase; - pw = (lfoState & 0x02) ? lfoPhase + 0x2000 : 0x2000 - lfoPhase; // PW LFO is unipolar - pw = (patchRam.switch2 & 0x01) ? 0x3fff : pw; // either LFO or "all on" - pw = 0x3fff - ((pw * patchRam.pwmLfo) >> 7); // scaled by PWM pot - // lfo = (lfo * lfoDelay) >> 14; + pw = (lfoState & 0x02) ? lfoPhase + 0x2000 : 0x2000 - lfoPhase; // PW LFO is unipolar + pw = (patchRam.switch2 & 0x01) ? 0x3fff : pw; // either LFO or "all on" + pw = 0x3fff - ((pw * patchRam.pwmLfo) >> 7); // scaled by PWM pot } void Module::run(Voice* voices, uint32_t blockSize) { // run updates for module board + int16_t lfoToVco = 0, lfoToVcf = 0; + // FIXME break these out to the patch setter a = attackTable[patchRam.env_a]; // attack time coeff looked up in table d = decayTable[patchRam.env_d]; // decay time coeff looked up in table @@ -116,10 +117,11 @@ void Module::run(Voice* voices, uint32_t blockSize) { runLFO(); - float pwf = pw / 32768.0f; + // calculate "smoothed" parameters + // these are single outputs with heavy RC smoothing for (uint32_t i = 0; i < blockSize; i++) { vcaRC = (master - vcaRC) * subTC + vcaRC; - pwmRC = (pwf - pwmRC) * pwmTC + pwmRC; + pwmRC = ((pw / 32768.0f) - pwmRC) * pwmTC + pwmRC; subRC = (sub - subRC) * vcaTC + subRC; vcaBuf[i] = vcaRC; @@ -129,13 +131,27 @@ void Module::run(Voice* voices, uint32_t blockSize) { if (bufPtr < bufferSize) bufPtr++; } - int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1); + lfoToVco = (lfoDepthTable[patchRam.vcoLfo] * lfoDelay) >> 8; // lookup table is 0-255 + lfoToVco += /* lfo from modwheel FIXME */ 0; + if (lfoToVco > 0xff) lfoToVco = 0xff; + lfoToVco = (lfo * lfoToVco) >> 11; // 8 for normalisation plus three additional DSLR EA - int16_t pitchBase = 0x1818; - pitchBase += (lfo * lfoDepthTable[patchRam.vcoLfo]) >> 11; + lfoToVcf = (patchRam.vcfLfo * lfoDelay) >> 7; // value is 0-127 + lfoToVcf = (lfo * lfoToVcf) >> 9; // 8 for normalisation plus one additional DSLR EA + int16_t pitchBase = 0x1818, vcfBase = 0; + pitchBase += lfoToVco; + pitchBase += /* pitch bend FIXME */ 0; + + // int16_t vcf = (patchRam.vcfEnv << 7) * ((patchRam.switch2 & 0x02) ? -1 : 1); + vcfBase = (patchRam.vcfFreq << 7) + /* vcf bend FIXME */ 0; + vcfBase += lfoToVcf; + if (vcfBase > 0x3fff) vcfBase = 0x3fff; + if (vcfBase < 0x0000) vcfBase = 0x0000; + + // per-voice calculations for (uint32_t i = 0; i < NUM_VOICES; i++) { - // maybe move all this into voice.cpp FIXME + // run one step of the envelope Voice* v = &voices[i]; switch (v->envPhase) { case 0: // release phase FIXME use an enum I guess @@ -154,21 +170,20 @@ void Module::run(Voice* voices, uint32_t blockSize) { } // pitch - // FIXME clean this all up a bit - int16_t pitch = pitchBase + (v->note << 8); - int16_t semi = pitch >> 8; + uint16_t pitch = pitchBase + (v->note << 8); + uint8_t semi = pitch >> 8; float frac = (pitch & 0xff) / 256.0; float p1 = pitchTable[semi], p2 = pitchTable[semi + 1]; - int16_t px = ((p2 - p1) * frac + p1); + int16_t px = ((p2 - p1) * frac + p1); // interpolated pitch from table + // octave divider px *= (patchRam.switch1 & 0x07); - v->omega = px / (sampleRate * 8.0f); // fixme use proper scaler + v->omega = px / (sampleRate * 8.0f); // FIXME recalculate table using proper scaler // per voice we need to calculate the key follow amount and envelope amount - v->vcfCut = (patchRam.vcfFreq << 7) + ((vcf * v->env) >> 14); - v->vcfCut += (lfo * patchRam.vcfLfo) >> 9; + v->vcfCut = vcfBase + (((v->env * patchRam.vcfEnv)>>7) * ((patchRam.switch1 & 0x02) ? -1 : 1)); v->vcfCut += (int)((v->note - 36) * (patchRam.vcfKey << 1) * 0.375); diff --git a/plugin/module.hpp b/plugin/module.hpp index 3f75a8c..2b6e1f8 100644 --- a/plugin/module.hpp +++ b/plugin/module.hpp @@ -156,11 +156,11 @@ class Voice { uint8_t pulseStage = 1; // pulse wave phase float subosc = 1; // sub oscillator flipflop output - uint8_t envPhase = 0; - int16_t env = 0; // output amplitude - uint16_t vcfCut; - int16_t vcaEnv; - float vcaRC = 0, vcfRC = 0; + uint8_t envPhase = 0; // current running state of envelope + int16_t env = 0; // calculated envelope amount + int16_t vcfCut; // calculated cutoff to filter + int16_t vcaEnv; // calculated level to VCA (env/gate) + float vcaRC = 0, vcfRC = 0; // RC circuit state values uint8_t note = 0;