mystran filter

This commit is contained in:
Gordon JC Pearce 2025-12-26 22:08:52 +00:00
parent 2d53d3c5da
commit 36c27f14d8
3 changed files with 134 additions and 12 deletions

View File

@ -74,7 +74,7 @@ void Module::run(Voice* voices, uint32_t blockSize) {
sub = patchRam.sub / 127.0f; sub = patchRam.sub / 127.0f;
lfoPhase += lfoRateTable[patchRam.lfoRate]; lfoPhase += lfoRateTable[patchRam.lfoRate];
res = patchRam.vcfReso / 127.0 * 5; res = patchRam.vcfReso / 127.0;
noise = patchRam.noise / 127.0; noise = patchRam.noise / 127.0;
// FIXME the exp in these is expensive, don't call it all the time // FIXME the exp in these is expensive, don't call it all the time

View File

@ -48,6 +48,7 @@ class Module {
float saw = 0, square = 0, sub = 0, noise = 0; float saw = 0, square = 0, sub = 0, noise = 0;
#if 0
struct { struct {
uint8_t lfoRate = 0x58; uint8_t lfoRate = 0x58;
uint8_t lfoDelay = 0x00; uint8_t lfoDelay = 0x00;
@ -68,6 +69,29 @@ class Module {
uint8_t switch1 = 0x4a; uint8_t switch1 = 0x4a;
uint8_t switch2 = 0x18; uint8_t switch2 = 0x18;
} patchRam; } patchRam;
#else
struct {
uint8_t lfoRate = 0x40;
uint8_t lfoDelay = 0x00;
uint8_t vcoLfo = 0x00;
uint8_t pwmLfo = 0x00;
uint8_t noise = 0x01;
uint8_t vcfFreq = 0x31;
uint8_t vcfReso = 0x7f;
uint8_t vcfEnv = 0x00;
uint8_t vcfLfo = 0x00;
uint8_t vcfKey = 0x7f;
uint8_t vca = 0x40;
uint8_t env_a = 0x00;
uint8_t env_d = 0x00;
uint8_t env_s = 0x00; // 0x3f80
uint8_t env_r = 0x00;
uint8_t sub = 0x00;
uint8_t switch1 = 0x22;
uint8_t switch2 = 0x1d;
} patchRam;
#endif
Chorus* chorus; Chorus* chorus;
float vcaTC; float vcaTC;
@ -111,7 +135,8 @@ class Voice {
uint8_t note = 0; uint8_t note = 0;
// filter // filter
float b1 = 0, b2 = 0, b3 = 0, b4 = 0; float y0 = 0, y1 = 0, y2 = 0, y3 = 0;
double s[4] = {0, 0, 0, 0};
}; };
#endif #endif

View File

@ -50,16 +50,46 @@ void Voice::off() {
envPhase = 0; envPhase = 0;
} }
// tanh(x)/x approximation, flatline at very high inputs
// so might not be safe for very large feedback gains
// [limit is 1/15 so very large means ~15 or +23dB]
double tanhXdX(double x) {
return 1-0.1*abs(x);
double a = x*x;
// IIRC I got this as Pade-approx for tanh(sqrt(x))/sqrt(x)
return ((a + 105)*a + 945) / ((15*a + 420)*a + 945);
}
void Voice::run(Module* m, float* buffer, uint32_t samples) { void Voice::run(Module* m, float* buffer, uint32_t samples) {
// carry out per-voice calculations for each block of samples // carry out per-voice calculations for each block of samples
float out, t, fb; float out, t, fb;
// FIXME incorrect double zi;
// calculate cutoff frequency // calculate cutoff frequency
float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f)); float cut = 248.0f * (powf(2, (vcfCut - 0x1880) / 1143.0f));
cut = 0.25 * 6.2832 * cut / 48000.0f; // FIXME hardcoded values cut = M_PI * cut / sampleRate;
cut = cut / (1 + cut); // correct tuning warp cut = cut / (1 + cut); // correct tuning warp
// printf("%f\n", cut);
//if (cut > 0.5) cut = 0.5;
// double f = tan(cut);
//printf("cut = %4f f = %4f\n", cut, f);
double r = (40.0/9.0) * m->res;
float amp = vcaEnv / 4096.0f; float amp = vcaEnv / 4096.0f;
for (uint32_t i = 0; i < samples; i++) { for (uint32_t i = 0; i < samples; i++) {
@ -98,13 +128,80 @@ void Voice::run(Module* m, float* buffer, uint32_t samples) {
delay += m->subBuf[i] * subosc ; delay += m->subBuf[i] * subosc ;
out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0); out += m->noise * (0.8 - 1.6 * (rand() & 0xffff) / 65536.0);
out *= 0.5; out *= 0.01;
// same time constant for both VCF and VCF RC circuits // same time constant for both VCF and VCF RC circuits
vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC; vcfRC = (cut - vcfRC) * m->vcaTC + vcfRC;
#if 1
//// LICENSE TERMS: Copyright 2012 Teemu Voipio
//
// You can use this however you like for pretty much any purpose,
// as long as you don't claim you wrote it. There is no warranty.
//
// Distribution of substantial portions of this code in source form
// must include this copyright notice and list of conditions.
//
// input delay and state for member variables
// cutoff as normalized frequency (eg 0.5 = Nyquist)
// resonance from 0 to 1, self-oscillates at settings over 0.9
//void transistorLadder(
// double cutoff, double resonance,
// double * in, double * out, unsigned nsamples)
//{
// tuning and feedback
//------------------------------------------------------------------------------ sample loop
//for(unsigned n = 0; n < nsamples; ++n)
//{
// input with half delay, for non-linearities
double ih = 0.5 * (out + zi); zi = out;
//double ih = out;
// evaluate the non-linear gains
double t0 = tanhXdX((ih * (r+1))- r * s[3]);
double t1 = tanhXdX(s[0]);
double t2 = tanhXdX(s[1]);
double t3 = tanhXdX(s[2]);
double t4 = tanhXdX(s[3]);
double f = vcfRC;
// g# the denominators for solutions of individual stages
double g0 = 1 / (1 + f*t1), g1 = 1 / (1 + f*t2);
double g2 = 1 / (1 + f*t3), g3 = 1 / (1 + f*t4);
// f# are just factored out of the feedback solution
double f3 = f*t3*g3, f2 = f*t2*g2*f3, f1 = f*t1*g1*f2, f0 = f*t0*g0*f1;
// solve feedback
double y3 = (g3*s[3] + f3*g2*s[2] + f2*g1*s[1] + f1*g0*s[0] + f0*out) / (1 + r*f0);
// then solve the remaining outputs (with the non-linear gains here)
double xx = t0*((out * (r+1)) - r*y3);
double y0 = t1*g0*(s[0] + f*xx);
double y1 = t2*g1*(s[1] + f*y0);
double y2 = t3*g2*(s[2] + f*y1);
// update state
s[0] += 2*f * (xx - y0);
s[1] += 2*f * (y0 - y1);
s[2] += 2*f * (y1 - y2);
s[3] += 2*f * (y2 - t4*y3);
//out[n] = y3;
// }
#else
for (uint8_t ovs = 0; ovs < 4; ovs++) { for (uint8_t ovs = 0; ovs < 4; ovs++) {
fb = b4; fb = y3;
// hard clip // hard clip
fb = ((out * 0.5) - fb) * m->res; fb = ((out * 0.5) - fb) * m->res;
if (fb > 4) fb = 4; if (fb > 4) fb = 4;
@ -112,14 +209,14 @@ void Voice::run(Module* m, float* buffer, uint32_t samples) {
// fb = 1.5 * fb - 0.5 * fb * fb * fb; // fb = 1.5 * fb - 0.5 * fb * fb * fb;
// //
b1 = ((out + fb - b1) * vcfRC) + b1; y0 = ((out + fb - y0) * vcfRC) + y0;
b2 = ((b1 - b2) * vcfRC) + b2; y1 = ((y0 - y1) * vcfRC) + y1;
b3 = ((b2 - b3) * vcfRC) + b3; y2 = ((y1 - y2) * vcfRC) + y2;
b4 = ((b3 - b4) * vcfRC) + b4; y3 = ((y2 - y3) * vcfRC) + y3;
} }
#endif
vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC; vcaRC = (amp - vcaRC) * m->vcaTC + vcaRC;
buffer[i] += 0.09367 * m->vcaBuf[i] * vcaRC * b4; buffer[i] += 1 * m->vcaBuf[i] * vcaRC * y3;
lastpw = m->pwmBuf[i]; lastpw = m->pwmBuf[i];
} }