chassis/plugin/voicecpu.cpp
2024-09-10 14:57:56 +01:00

631 lines
16 KiB
C++

/*
Chassis polysynth framework
Copyright 2024 Gordon JC Pearce <gordonjcp@gjcp.net>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// contains the emulation of the digital bits
// what's with the crazy private variables and all the gotos with crazy labels?
// this code emulates the uPD7811 code directly (probably inefficiently)
// to allow for documenting what the variables actually do
// they're really bitfields holding a bit for each voice
#include "voicecpu.hpp"
#include <cmath>
#include <cstdio>
#include "voice.hpp"
using namespace Digital;
bool Voice::isFree() {
return ff10 == false;
}
void Voice::on(uint32_t key, bool reset = 0) {
// this current implementation doesn't reset the voice
(void)reset;
// printf("called with key=%d\n", note);
ff10 = true; // note held from keyboard
ff07 = true; // attack phase
if (note == key) goto h0144;
note = key;
if (ff11) goto h013e;
h0132:
if (ff33) goto h0149; // sustained
ff33 = false;
goto h0149;
h013e:
ff00 = true; // in a real one, voice counter needs programmed
goto h0149;
h0144:
if (!ff11) goto h0132; // unsure, copied from ff10 at start of mainloop
h0149:
// this is in the wrong place really but is the equivalent of programming the counter
// and VCO ramp DAC
// omega = (261.63 * powf(2, (note - 60) / 12.0f)) / 48000.0f;
// printf("note, key = %d, %d\n", note, key);
return;
}
void Voice::off() {
bool sustain = false;
ff10 = false;
if (!sustain) { // dummy sustain
ff33 = false;
}
}
void Synth::lfoDelay() {
// compute LFO delay
uint16_t a, bc, d, ea, tos;
// 030d: 45 11 3f ONIW $0011,$3F ; are any notes enabled
// 0310: 4e 59 JRE $036B ; no, just run LFO
if (!keyon /* ff11 */) goto h036b; // skip ahead if no notes are pressed
// 0312: 5b 1e BIT 3,$001E ; ramp-up is complete?
// 0314: ce JR $0323 ; no
if (!(ff1e & 0x08)) goto h0323;
// no not was playing so reset
bc = 0;
ff56 = 0; // delay envelope
ff5a = 0; // holdoff timer
ff1e &= 0xf1; // mask bits in flag byte
h0323:
if (!(ff1e & 0x02)) goto h0370; // compute delay envelope
if (!(ff1e & 0x04)) goto h0388; // compute holdoff timer
// 032b
bc |= 0xff00; // initial scaling value?
h032d:
tos = bc; // push bc
// 032e
// 032e: 01 49 LDAW $0049 ; DCO LFO depth
a = lfoDepthTable[patchRam.vcoLfo];
// MUL B; MOV A, EAH
a = (a * (bc >> 8)) >> 8;
// add in the modwheel amount, clamp if it exceeds 0xff
// 0333 ADDNCW $0064; MVI A, $FF
a += ff64;
if (a > 0xff) a = 0xff;
// 0338 sets up HL to store computed pitch LFO output
// 33b
bc = ff4d; // current LFO output
// 033f
ea = (bc & 0xff) * a; // MUL C
d = a; // MOV D,A
a = (ea >> 8); // MOV A,EAH
bc &= 0xff00;
bc |= a; // MOV C,A
a = d; // MOV A,D
// 0345
ea = (bc >> 8) * a; // MUL B
ea += (bc & 0xff); // EADD EA, C
// 0349
ea >>= 3; // divide by eight
// 034f
ff51 = ea; // save scaled pitch LFO
bc = tos; // pop BC, contains scaling amount
// 0352: 01 48 LDAW $0048 ; VCF LFO amount
a = patchRam.vcfLfo << 1; // amount is doubled and stored at ff48
// 0354
ea = (bc >> 8) * a; // MUL B
a = ea >> 8; // MOV A, EAH
bc = ff4d; // current LFO output
// 035b
ea = (bc & 0xff) * a; // MUL C
d = a; // MOV D,A
a = ea >> 8; // MOV A, EAH
bc &= 0xff00;
bc |= a; // MOV C,A
a = d; // MOV A,D
ea = (bc >> 8) * a; // MUL B
ea += (bc & 0xff); // EADD EA,C
ea >>= 1; // DSLR A
ff53 = ea; // save scaled VCF LFO
goto h03a1;
h036b:
ff1e |= 0x08; // set LFO flag
goto h0323;
h0370: // calculate holdoff time
ea = ff56; // holdoff time
// 0375: 70 1f 58 ff LBCD $FF58 ; add on delay amount
bc = attackTable[patchRam.lfoDelay]; // stored at ff58
// 0379
ea += bc; // DADD EA,BC
ff56 = ea; // STEAX (DE) which still holds ff56 from 0x370
a = ea >> 8; // MOV A, EAH
if (a & 0xc0) goto h0385; // OFFI A, $C0
bc &= 0xff; // MOV B, 0
goto h032d;
h0385:
ff1e |= 0x02; // stop predelay flag
h0388:
ea = ff5a; // envelope speed
// 038d: 70 1f 6c ff LBCD $FF6C ; value from "short" LFO lookup table
bc = lfoDelayTable[patchRam.lfoDelay >> 4]; // delay setting divided by 8 and saved at ff6c
// 0391 DADDNC EA, BC
if ((ea + bc) > 0xffff) goto h039a;
ea += bc;
// 0394
ff5a = ea; // STEAX (HL) hl still contains ff5a
bc |= (ea & 0xff00); // MOV A, EAH; MOV B, A
goto h032d;
h039a:
ff1e |= 0x04;
bc |= 0xff; // MVI B, $ff
goto h032d;
h03a1:
return;
}
void Voice::calcPitch(Synth &s) {
uint32_t bc, ea, a;
// 03ad
ea = 0x1818;
// add in tuning value from ff61, not implemented
// 03ba
// 03ba: 70 1f 51 ff LBCD $FF51 ; computed pitch LFO?
bc = s.ff51; // computed pitch LFO
if (s.ff4a & 0x02) {
ea -= bc;
} else {
ea += bc;
}
// 03c6
// add in bender from ff68
// 03d2: 24 6f ff LXI DE,$FF6F
// 03d5: 48 92 STEAX (DE) ; save final value
s.ff6f = ea;
// these are set, because in the uPD7811 code it loops around all six voices
// 03d7: 71 0f 00 MVIW $000F,$00 ; voice counter
// 03da: 24 71 ff LXI DE,$FF71 ; DAC pitch table for voices
// 03dd: 34 09 ff LXI HL,$FF09 ; note pitch table for voices
// 03e0: 48 82 LDEAX (DE) ; fetch
// 03e2: 2d LDAX (HL+) ; fetch note
ea = ff71;
a = note;
// 03e3 MOV B,A
bc = a << 8;
// 03e6: 01 7d LDAW $007D ; porta coefficient
a = 0x00; // set from porta coefficient ff7d
if (a != 0) goto h03f5;
// 3eb
ea = bc;
h03ec:
ff71 = ea; // STEAX (DE++)
// if we were handling all voices in this loop we'd do
// 03ee: 20 0f INRW $000F ; voice counter
// 03f0: 75 0f 06 EQIW $000F,$06 ; loop
// 03f3: ec JR $03E0 ; loop around note
// 03f4: d2 JR $0407 ; jump ahead
goto h0407;
h03f5:
// portamento down
if (ea == bc) goto h03ec; // DNE EA, BC; JR 03EC store value
if (!(ea > bc)) goto h0401; // DGT EA, BC; JR 0401
ea -= a;
if (!(ea > bc)) ea = bc;
goto h03ec;
h0401:
// portamento up
ea += a;
if (!(ea < bc)) ea = bc;
goto h03ec;
h0407:
// bit of code that outputs sub osc CV
// 0413: 71 0f 00 MVIW $000F,$00 ; reset voice counter
// 0416: 71 34 01 MVIW $0034,$01 ; voice selector, first voice
// 0419
ea = ff71; // pitch + fraction per voice
bc = s.ff6f; // tune + lfo + bend
ea += bc;
// 0424
s.ff6e = ea & 0xff; // MOV A, EAL; STAW 006e
a = ea >> 8; // mov a, EAH
// 0428
if (a <= 0x2f) goto h04a5; // GTI A,$2F; JRE $04A5
if (a >= 0x97) goto h04ac; // LTI A,$97; JRE $04AC
a -= 0x30;
h0432:
// printf("setting omega for note %d \n", a);
omega = ((s.pitchCV[a + 1] - s.pitchCV[a]) * (s.ff6e / 256.0)) + s.pitchCV[a];
// 0432 onwards calculates the address for the CV
// table at E60 and stacks it
// 043a onwards fetches the value from the divider
// table and computes a linear interpolation with the next one up
// using the fractional value stored in ff6e
// 045a onwards decides which divider to program
// 0471 unstacks the CV table address and calculates a linear
// interpolation of this and the next CV value using ff6e
// 048b onwards sends it to the correct DAC
// 0496 onwards works out which voice to do next and loops
// 04a3: 4e 30 JRE $04D5 ; calculate filter
return;
h04a5: // pitch too low
s.ff6e = 0;
a = 0;
goto h0432;
h04ac: // pitch too high
s.ff6e = 0;
a = 0x66;
goto h0432;
// 04b3 programs the dividers somehow
}
void Voice::calcFilter(Synth &s) {
// 04d5
uint16_t a, bc, ea, tos;
goto h04d5;
h04d5:
s.ff6a = 0;
// 04d8: 70 1f 3d ff LBCD $FF3D ; VCF cutoff
// 04dc: a5 DMOV EA,BC
ea = s.patchRam.vcfFreq << 7; // stored exended to two bytes
bc = s.ff53; // scaled VCF LFO
// 04e1: 59 4a BIT 1,$004A ; LFO add/sub flag
// 04e3: e7 JR $04CB
// 04e4: 74 b5 DSUBNB EA,BC ; add, skip if no borrow
// 04e6: 71 6a 01 MVIW $006A,$01 ; set a flag?
if (!(s.ff4a & 0x02)) {
ea += bc;
} else {
if ((ea - bc) < bc) {
s.ff6a = 1;
}
ea -= bc;
}
bc = s.ff65;
if (!(s.ff1e & 0x20)) {
if ((ea + bc) > 0xffff) {
s.ff6a = 0;
}
ea += bc;
} else {
if ((ea - bc) < bc) {
s.ff6a = 1;
}
ea -= bc;
}
// 04f6
tos = ea;
// 04f7: 71 0f 00 MVIW $000F,$00 ; voice counter
// 04fa: 71 34 01 MVIW $0034,$01 ; voice enable bit
// 04fd: 34 71 ff LXI HL,$FF71 ; pitch + fraction table
// 0500: 24 25 ff LXI DE,$FF25 ; release time
// 0503: b3 PUSH HL ; TOS = address of DAC note, then VCF Bias
// 0504
ea = ff27; // current envelope level
// in the real ROM the envelope code would run here
// there's something about the first voice, I'd need to emulate that a bit more
// 05a6 sets the DAC depending on the state of the ENV/GATE switch
// 05c0: a3 POP HL ; HL might have started as FF71
// hl = ff71; // this was stored on the stack back at 0503
a = s.ff6a;
s.ff6b = a;
ea = ff27;
bc = ea;
// 05c8: 01 41 LDAW $0041 ; VCF ENV MOD
a = s.patchRam.vcfEnv << 1; // stored doubled
// 05c8
ea = (bc & 0xff) * a; // MUL C
a = ea >> 8; // MOV A, EAH
bc &= 0xff00;
bc |= a; // MOV C,A
a = s.patchRam.vcfEnv << 1; // stored doubled
ea = (bc >> 8) * a; // MUL B
ea += (bc & 0xff); // EADD EA,C
bc = ea;
ea = tos; // precomputed VCF knob + LFO + bend
if (!(s.patchRam.switch2 & 0x02)) {
if ((ea + bc) > 0xffff) {
s.ff6b = 0;
}
ea += bc;
} else {
if ((ea - bc) < bc) {
s.ff6b = 1;
}
ea -= bc;
}
// 05e0
tos = ea; // save
ea = ff71; // pitch value
ea >>= 2;
bc = ea;
ea >>= 1;
ea += bc; // multiplied by 0.375
bc = 0x1680; // this is 0x3c00 * 0.375, middle C * 0.375
if (ea <= bc) goto h0620;
// 05f3
ea -= bc;
bc = ea;
// 05f6
a = s.patchRam.vcfKey << 1; // stored doubled at ff42
ea = (bc & 0xff) * a; // MUL C
a = ea >> 8; // MOV A, EAH
bc &= 0xff00;
bc |= a; // MOV C,A
a = s.patchRam.vcfKey << 1; // needs lookup table
ea = (bc >> 8) * a; // MUL B
ea += (bc & 0xff); // EADD EA,C
bc = ea;
// 0603
ea = tos; // get saved VCF back
// 0604: 74 a5 DADDNC EA,BC
// 0606: 71 6b 00 MVIW $006B,$00
if ((ea + bc) > 0xffff) {
s.ff6b = 0;
}
ea += bc;
h0609:
if (!(ea & 0xc000)) goto h063c;
ea = 0;
// 0611
if (!(s.ff6b & 0x01))
ea = 0x3fff;
goto h063c;
h0620:
bc = ea;
ea = 0x1680;
ea -= bc;
bc = ea;
// 0627
a = s.patchRam.vcfKey << 1; // stored doubled at ff42
ea = (bc & 0xff) * a; // MUL C
a = ea >> 8; // MOV A, EAH
bc &= 0xff00;
bc |= a; // MOV C,A
a = s.patchRam.vcfKey << 1; // needs lookup table
ea = (bc >> 8) * a; // MUL B
ea += (bc & 0xff); // EADD EA,C
bc = ea;
// 0634
ea = tos;
if ((ea - bc) < bc) {
s.ff6b = 1;
}
ea -= bc;
goto h0609;
h063c:
vcfenv = ea;
return;
}
void Voice::envelope(Synth &s) {
uint16_t bc, ea = env;
ff11 = ff10;
// 0509
if (!ff11) goto h0538;
// 050e
if (!ff33) goto h0563;
// 0513
if (!ff07) goto h051e;
h0517:
ff07 = false;
h051e:
bc = s.patchRam.env_s << 7; // half scale
if (ea < bc) ea = bc;
ea -= bc;
bc = ea;
ea = (ea * decayTable[s.patchRam.env_d]) >> 16;
ea += s.patchRam.env_s << 7;
// printf("returning from decay phase\n");
goto h0590;
h0538:
// printf("got to 0x0538\n");
if (!ff07) goto h054a; // note on? if not skip ahead
// 053c
if (ff08) goto h0517;
ff07 = false;
h054a:
// printf("release phase\n");
ff33 = false;
ff08 = false;
bc = ea;
ea = (ea * decayTable[s.patchRam.env_r]) >> 16;
// printf("returning from release phase\n");
goto h0590;
h0563:
// printf("attack phase\n");
ff08 = false;
ea += attackTable[s.patchRam.env_a];
if (ea & 0xc000) {
ea = 0x3fff;
ff33 = true;
ff08 = true;
}
h0590:
env = ea;
ff27 = ea;
// printf("%04x %d %d %d %d %d \n", ea, ff07, ff08, ff10, ff11, ff33);
}
void Synth::runLFO() {
// compute a loop's worth of LFO
uint16_t bc, ea;
// 074e
ea = ff4d; // lfo value
bc = lfoRateTable[patchRam.lfoRate];
// bit zero is low for rising slope, high for falling
if (!(ff4a & 0x01)) goto h078b;
// 075b DSUBNB EA, BC subtract BC from EA, skip next instruction if EA < BC
// 075d JRE 079a routine that handles flipping from down to up
ea -= bc;
if (ea < bc) goto h079a;
h075f:
ff4d = ea; // LFO output variable
// bit one seems to be used to represent negative values of LFO
if (!(ff4a & 0x02)) goto h07a2; // routine that adds on 0x2000 to ea
// 0765 LFO is negative (bit 1 is high) so invert the value of EA
// so that we have a positive-only LFO running from 0 to 0x3fff
bc = ea;
ea = 0x2000;
ea -= bc;
h076b:
bc = ea; // BC now contains an LFO range from 0 to 0x3fff, always positive
if (patchRam.switch2 & 0x01) { // LFO Manual?
bc = 0x3fff; // fixed maximum value
}
// 0771
bc = (bc * patchRam.pwmLfo) >> 7; // scale by PWM pot amount
// 077d
bc = 0x3fff - bc; // invert so pot = 0 gives 0x3fff
// test if squarewave is on or off - if it's off set PW to 0
if (!(patchRam.switch1 & 0x08)) bc = 0x0000; // square off
// final computed PWM value
ff4f = bc;
// 078a
goto h07a9;
h078b:
// BC contains rate, EA contains LFO value
ea += bc;
if (ea & 0xe000) { // if we've exceeded 0x1fff
ea = 0x1fff; // clamp
ff4a++; // increment the flags
}
goto h075f; // store in LFO output variable
h079a:
ea = 0; // output is close (enough) to zero, clamp
ff4a++; // increment the flags
goto h075f; // store in LFO output variable
h07a2: // LFO output is positive
ea += 0x2000; // add on 0x2000 to scale PWM to 0 - 0x3fff
goto h076b; // jump back to scale LFO amount
h07a9:
return;
}