635 lines
16 KiB
C++
635 lines
16 KiB
C++
/*
|
|
Chassis polysynth framework
|
|
|
|
Copyright 2024 Gordon JC Pearce <gordonjcp@gjcp.net>
|
|
|
|
Permission to use, copy, modify, and/or distribute this software for any
|
|
purpose with or without fee is hereby granted, provided that the above
|
|
copyright notice and this permission notice appear in all copies.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
// contains the emulation of the digital bits
|
|
|
|
// what's with the crazy private variables and all the gotos with crazy labels?
|
|
// this code emulates the uPD7811 code directly (probably inefficiently)
|
|
// to allow for documenting what the variables actually do
|
|
// they're really bitfields holding a bit for each voice
|
|
|
|
#include "voicecpu.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
#include "voice.hpp"
|
|
|
|
using namespace Digital;
|
|
|
|
bool Voice::isFree() {
|
|
return ff10 == false;
|
|
}
|
|
|
|
void Voice::on(uint32_t key, bool reset = 0) {
|
|
// this current implementation doesn't reset the voice
|
|
(void)reset;
|
|
|
|
// printf("called with key=%d\n", note);
|
|
|
|
ff10 = true; // note held from keyboard
|
|
ff07 = true; // attack phase
|
|
if (note == key) goto h0144;
|
|
note = key;
|
|
if (ff11) goto h013e;
|
|
h0132:
|
|
if (ff33) goto h0149; // sustained
|
|
ff33 = false;
|
|
goto h0149;
|
|
|
|
h013e:
|
|
ff00 = true; // in a real one, voice counter needs programmed
|
|
goto h0149;
|
|
|
|
h0144:
|
|
if (!ff11) goto h0132; // unsure, copied from ff10 at start of mainloop
|
|
|
|
h0149:
|
|
// this is in the wrong place really but is the equivalent of programming the counter
|
|
// and VCO ramp DAC
|
|
// omega = (261.63 * powf(2, (note - 60) / 12.0f)) / 48000.0f;
|
|
// printf("note, key = %d, %d\n", note, key);
|
|
return;
|
|
}
|
|
|
|
void Voice::off() {
|
|
bool sustain = false;
|
|
ff10 = false;
|
|
if (!sustain) { // dummy sustain
|
|
ff33 = false;
|
|
}
|
|
}
|
|
|
|
void Synth::lfoDelay() {
|
|
// compute LFO delay
|
|
|
|
uint16_t a, bc, d, ea, tos;
|
|
|
|
// 030d: 45 11 3f ONIW $0011,$3F ; are any notes enabled
|
|
// 0310: 4e 59 JRE $036B ; no, just run LFO
|
|
if (!keyon /* ff11 */) goto h036b; // skip ahead if no notes are pressed
|
|
|
|
// 0312: 5b 1e BIT 3,$001E ; ramp-up is complete?
|
|
// 0314: ce JR $0323 ; no
|
|
if (!(ff1e & 0x08)) goto h0323;
|
|
|
|
// no not was playing so reset
|
|
bc = 0;
|
|
ff56 = 0; // delay envelope
|
|
ff5a = 0; // holdoff timer
|
|
ff1e &= 0xf1; // mask bits in flag byte
|
|
|
|
h0323:
|
|
if (!(ff1e & 0x02)) goto h0370; // compute delay envelope
|
|
if (!(ff1e & 0x04)) goto h0388; // compute holdoff timer
|
|
|
|
// 032b
|
|
bc |= 0xff00; // initial scaling value?
|
|
|
|
h032d:
|
|
tos = bc; // push bc
|
|
|
|
// 032e
|
|
// 032e: 01 49 LDAW $0049 ; DCO LFO depth
|
|
a = lfoDepthTable[patchRam.vcoLfo];
|
|
|
|
// MUL B; MOV A, EAH
|
|
a = (a * (bc >> 8)) >> 8;
|
|
|
|
// add in the modwheel amount, clamp if it exceeds 0xff
|
|
// 0333 ADDNCW $0064; MVI A, $FF
|
|
a += ff64;
|
|
if (a > 0xff) a = 0xff;
|
|
|
|
// 0338 sets up HL to store computed pitch LFO output
|
|
|
|
// 33b
|
|
bc = ff4d; // current LFO output
|
|
|
|
// 033f
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
d = a; // MOV D,A
|
|
a = (ea >> 8); // MOV A,EAH
|
|
bc &= 0xff00;
|
|
bc |= a; // MOV C,A
|
|
a = d; // MOV A,D
|
|
|
|
// 0345
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA, C
|
|
|
|
// 0349
|
|
ea >>= 3; // divide by eight
|
|
|
|
// 034f
|
|
ff51 = ea; // save scaled pitch LFO
|
|
|
|
bc = tos; // pop BC, contains scaling amount
|
|
// 0352: 01 48 LDAW $0048 ; VCF LFO amount
|
|
a = patchRam.vcfLfo << 1; // amount is doubled and stored at ff48
|
|
|
|
// 0354
|
|
ea = (bc >> 8) * a; // MUL B
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc = ff4d; // current LFO output
|
|
|
|
// 035b
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
d = a; // MOV D,A
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc &= 0xff00;
|
|
bc |= a; // MOV C,A
|
|
a = d; // MOV A,D
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA,C
|
|
ea >>= 1; // DSLR A
|
|
ff53 = ea; // save scaled VCF LFO
|
|
goto h03a1;
|
|
|
|
h036b:
|
|
ff1e |= 0x08; // set LFO flag
|
|
goto h0323;
|
|
|
|
h0370: // calculate holdoff time
|
|
ea = ff56; // holdoff time
|
|
|
|
// 0375: 70 1f 58 ff LBCD $FF58 ; add on delay amount
|
|
bc = attackTable[patchRam.lfoDelay]; // stored at ff58
|
|
// 0379
|
|
ea += bc; // DADD EA,BC
|
|
ff56 = ea; // STEAX (DE) which still holds ff56 from 0x370
|
|
|
|
a = ea >> 8; // MOV A, EAH
|
|
if (a & 0xc0) goto h0385; // OFFI A, $C0
|
|
bc &= 0xff; // MOV B, 0
|
|
goto h032d;
|
|
h0385:
|
|
ff1e |= 0x02; // stop predelay flag
|
|
|
|
h0388:
|
|
ea = ff5a; // envelope speed
|
|
|
|
// 038d: 70 1f 6c ff LBCD $FF6C ; value from "short" LFO lookup table
|
|
bc = lfoDelayTable[patchRam.lfoDelay >> 4]; // delay setting divided by 8 and saved at ff6c
|
|
|
|
// 0391 DADDNC EA, BC
|
|
if ((ea + bc) > 0xffff) goto h039a;
|
|
ea += bc;
|
|
|
|
// 0394
|
|
ff5a = ea; // STEAX (HL) hl still contains ff5a
|
|
|
|
bc |= (ea & 0xff00); // MOV A, EAH; MOV B, A
|
|
goto h032d;
|
|
|
|
h039a:
|
|
ff1e |= 0x04;
|
|
bc |= 0xff; // MVI B, $ff
|
|
goto h032d;
|
|
|
|
h03a1:
|
|
return;
|
|
}
|
|
|
|
void Voice::calcPitch(Synth &s) {
|
|
uint32_t bc, ea, a;
|
|
|
|
// 03ad
|
|
ea = 0x1818;
|
|
|
|
// add in tuning value from ff61, not implemented
|
|
|
|
// 03ba
|
|
// 03ba: 70 1f 51 ff LBCD $FF51 ; computed pitch LFO?
|
|
bc = s.ff51; // computed pitch LFO
|
|
if (s.ff4a & 0x02) {
|
|
ea -= bc;
|
|
} else {
|
|
ea += bc;
|
|
}
|
|
|
|
// 03c6
|
|
// add in bender from ff68
|
|
|
|
// 03d2: 24 6f ff LXI DE,$FF6F
|
|
// 03d5: 48 92 STEAX (DE) ; save final value
|
|
s.ff6f = ea;
|
|
|
|
// these are set, because in the uPD7811 code it loops around all six voices
|
|
// 03d7: 71 0f 00 MVIW $000F,$00 ; voice counter
|
|
// 03da: 24 71 ff LXI DE,$FF71 ; DAC pitch table for voices
|
|
// 03dd: 34 09 ff LXI HL,$FF09 ; note pitch table for voices
|
|
// 03e0: 48 82 LDEAX (DE) ; fetch
|
|
// 03e2: 2d LDAX (HL+) ; fetch note
|
|
|
|
ea = ff71;
|
|
a = note;
|
|
|
|
// 03e3 MOV B,A
|
|
bc = a << 8;
|
|
|
|
// 03e6: 01 7d LDAW $007D ; porta coefficient
|
|
a = 0x00; // set from porta coefficient ff7d
|
|
|
|
if (a != 0) goto h03f5;
|
|
|
|
// 3eb
|
|
ea = bc;
|
|
h03ec:
|
|
ff71 = ea; // STEAX (DE++)
|
|
|
|
// if we were handling all voices in this loop we'd do
|
|
// 03ee: 20 0f INRW $000F ; voice counter
|
|
// 03f0: 75 0f 06 EQIW $000F,$06 ; loop
|
|
// 03f3: ec JR $03E0 ; loop around note
|
|
// 03f4: d2 JR $0407 ; jump ahead
|
|
|
|
goto h0407;
|
|
|
|
h03f5:
|
|
// portamento down
|
|
if (ea == bc) goto h03ec; // DNE EA, BC; JR 03EC store value
|
|
if (!(ea > bc)) goto h0401; // DGT EA, BC; JR 0401
|
|
ea -= a;
|
|
if (!(ea > bc)) ea = bc;
|
|
goto h03ec;
|
|
h0401:
|
|
// portamento up
|
|
ea += a;
|
|
if (!(ea < bc)) ea = bc;
|
|
goto h03ec;
|
|
|
|
h0407:
|
|
// bit of code that outputs sub osc CV
|
|
// 0413: 71 0f 00 MVIW $000F,$00 ; reset voice counter
|
|
// 0416: 71 34 01 MVIW $0034,$01 ; voice selector, first voice
|
|
|
|
// 0419
|
|
ea = ff71; // pitch + fraction per voice
|
|
bc = s.ff6f; // tune + lfo + bend
|
|
ea += bc;
|
|
// 0424
|
|
s.ff6e = ea & 0xff; // MOV A, EAL; STAW 006e
|
|
a = ea >> 8; // mov a, EAH
|
|
|
|
// 0428
|
|
if (a <= 0x2f) goto h04a5; // GTI A,$2F; JRE $04A5
|
|
if (a >= 0x97) goto h04ac; // LTI A,$97; JRE $04AC
|
|
|
|
a -= 0x30;
|
|
|
|
h0432:
|
|
// printf("setting omega for note %d \n", a);
|
|
omega = ((s.pitchCV[a + 1] - s.pitchCV[a]) * (s.ff6e / 256.0)) + s.pitchCV[a];
|
|
|
|
omega *= 1 + (s.unisonDetune*0.25*detune[voicenum]);
|
|
//printf("%f %f %d\n", s.unisonDetune, omega, voicenum);
|
|
//phase = (2.4*omega*voicenum);
|
|
// 0432 onwards calculates the address for the CV
|
|
// table at E60 and stacks it
|
|
// 043a onwards fetches the value from the divider
|
|
// table and computes a linear interpolation with the next one up
|
|
// using the fractional value stored in ff6e
|
|
|
|
// 045a onwards decides which divider to program
|
|
|
|
// 0471 unstacks the CV table address and calculates a linear
|
|
// interpolation of this and the next CV value using ff6e
|
|
// 048b onwards sends it to the correct DAC
|
|
|
|
// 0496 onwards works out which voice to do next and loops
|
|
|
|
// 04a3: 4e 30 JRE $04D5 ; calculate filter
|
|
return;
|
|
|
|
h04a5: // pitch too low
|
|
s.ff6e = 0;
|
|
a = 0;
|
|
goto h0432;
|
|
|
|
h04ac: // pitch too high
|
|
s.ff6e = 0;
|
|
a = 0x66;
|
|
goto h0432;
|
|
|
|
// 04b3 programs the dividers somehow
|
|
}
|
|
|
|
void Voice::calcFilter(Synth &s) {
|
|
// 04d5
|
|
|
|
uint16_t a, bc, ea, tos;
|
|
|
|
goto h04d5;
|
|
|
|
h04d5:
|
|
s.ff6a = 0;
|
|
// 04d8: 70 1f 3d ff LBCD $FF3D ; VCF cutoff
|
|
// 04dc: a5 DMOV EA,BC
|
|
ea = s.patchRam.vcfFreq << 7; // stored exended to two bytes
|
|
bc = s.ff53; // scaled VCF LFO
|
|
|
|
// 04e1: 59 4a BIT 1,$004A ; LFO add/sub flag
|
|
// 04e3: e7 JR $04CB
|
|
// 04e4: 74 b5 DSUBNB EA,BC ; add, skip if no borrow
|
|
// 04e6: 71 6a 01 MVIW $006A,$01 ; set a flag?
|
|
if (!(s.ff4a & 0x02)) {
|
|
ea += bc;
|
|
} else {
|
|
if ((ea - bc) < bc) {
|
|
s.ff6a = 1;
|
|
}
|
|
ea -= bc;
|
|
}
|
|
|
|
bc = s.ff65;
|
|
if (!(s.ff1e & 0x20)) {
|
|
if ((ea + bc) > 0xffff) {
|
|
s.ff6a = 0;
|
|
}
|
|
ea += bc;
|
|
} else {
|
|
if ((ea - bc) < bc) {
|
|
s.ff6a = 1;
|
|
}
|
|
ea -= bc;
|
|
}
|
|
|
|
// 04f6
|
|
tos = ea;
|
|
|
|
// 04f7: 71 0f 00 MVIW $000F,$00 ; voice counter
|
|
// 04fa: 71 34 01 MVIW $0034,$01 ; voice enable bit
|
|
// 04fd: 34 71 ff LXI HL,$FF71 ; pitch + fraction table
|
|
// 0500: 24 25 ff LXI DE,$FF25 ; release time
|
|
// 0503: b3 PUSH HL ; TOS = address of DAC note, then VCF Bias
|
|
|
|
// 0504
|
|
ea = ff27; // current envelope level
|
|
|
|
// in the real ROM the envelope code would run here
|
|
|
|
// there's something about the first voice, I'd need to emulate that a bit more
|
|
|
|
// 05a6 sets the DAC depending on the state of the ENV/GATE switch
|
|
// 05c0: a3 POP HL ; HL might have started as FF71
|
|
|
|
// hl = ff71; // this was stored on the stack back at 0503
|
|
|
|
a = s.ff6a;
|
|
s.ff6b = a;
|
|
|
|
ea = ff27;
|
|
bc = ea;
|
|
|
|
// 05c8: 01 41 LDAW $0041 ; VCF ENV MOD
|
|
a = s.patchRam.vcfEnv << 1; // stored doubled
|
|
|
|
// 05c8
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc &= 0xff00;
|
|
bc |= a; // MOV C,A
|
|
a = s.patchRam.vcfEnv << 1; // stored doubled
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA,C
|
|
bc = ea;
|
|
ea = tos; // precomputed VCF knob + LFO + bend
|
|
|
|
if (!(s.patchRam.switch2 & 0x02)) {
|
|
if ((ea + bc) > 0xffff) {
|
|
s.ff6b = 0;
|
|
}
|
|
ea += bc;
|
|
} else {
|
|
if ((ea - bc) < bc) {
|
|
s.ff6b = 1;
|
|
}
|
|
ea -= bc;
|
|
}
|
|
|
|
// 05e0
|
|
tos = ea; // save
|
|
ea = ff71; // pitch value
|
|
|
|
ea >>= 2;
|
|
bc = ea;
|
|
ea >>= 1;
|
|
ea += bc; // multiplied by 0.375
|
|
|
|
bc = 0x1680; // this is 0x3c00 * 0.375, middle C * 0.375
|
|
|
|
if (ea <= bc) goto h0620;
|
|
|
|
// 05f3
|
|
ea -= bc;
|
|
bc = ea;
|
|
|
|
// 05f6
|
|
a = s.patchRam.vcfKey << 1; // stored doubled at ff42
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc &= 0xff00;
|
|
bc |= a; // MOV C,A
|
|
a = s.patchRam.vcfKey << 1; // needs lookup table
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA,C
|
|
bc = ea;
|
|
|
|
// 0603
|
|
ea = tos; // get saved VCF back
|
|
|
|
// 0604: 74 a5 DADDNC EA,BC
|
|
// 0606: 71 6b 00 MVIW $006B,$00
|
|
|
|
if ((ea + bc) > 0xffff) {
|
|
s.ff6b = 0;
|
|
}
|
|
ea += bc;
|
|
|
|
h0609:
|
|
if (!(ea & 0xc000)) goto h063c;
|
|
ea = 0;
|
|
// 0611
|
|
if (!(s.ff6b & 0x01))
|
|
ea = 0x3fff;
|
|
goto h063c;
|
|
|
|
h0620:
|
|
bc = ea;
|
|
ea = 0x1680;
|
|
ea -= bc;
|
|
bc = ea;
|
|
|
|
// 0627
|
|
a = s.patchRam.vcfKey << 1; // stored doubled at ff42
|
|
ea = (bc & 0xff) * a; // MUL C
|
|
a = ea >> 8; // MOV A, EAH
|
|
bc &= 0xff00;
|
|
bc |= a; // MOV C,A
|
|
a = s.patchRam.vcfKey << 1; // needs lookup table
|
|
ea = (bc >> 8) * a; // MUL B
|
|
ea += (bc & 0xff); // EADD EA,C
|
|
bc = ea;
|
|
|
|
// 0634
|
|
ea = tos;
|
|
if ((ea - bc) < bc) {
|
|
s.ff6b = 1;
|
|
}
|
|
ea -= bc;
|
|
goto h0609;
|
|
|
|
|
|
h063c:
|
|
vcfenv = ea;
|
|
return;
|
|
}
|
|
|
|
void Voice::envelope(Synth &s) {
|
|
uint16_t bc, ea = env;
|
|
|
|
ff11 = ff10;
|
|
|
|
// 0509
|
|
if (!ff11) goto h0538;
|
|
|
|
// 050e
|
|
if (!ff33) goto h0563;
|
|
|
|
// 0513
|
|
if (!ff07) goto h051e;
|
|
|
|
h0517:
|
|
ff07 = false;
|
|
|
|
h051e:
|
|
bc = s.patchRam.env_s << 7; // half scale
|
|
|
|
if (ea < bc) ea = bc;
|
|
|
|
ea -= bc;
|
|
bc = ea;
|
|
|
|
ea = (ea * decayTable[s.patchRam.env_d]) >> 16;
|
|
ea += s.patchRam.env_s << 7;
|
|
// printf("returning from decay phase\n");
|
|
goto h0590;
|
|
|
|
h0538:
|
|
// printf("got to 0x0538\n");
|
|
if (!ff07) goto h054a; // note on? if not skip ahead
|
|
// 053c
|
|
if (ff08) goto h0517;
|
|
ff07 = false;
|
|
h054a:
|
|
// printf("release phase\n");
|
|
ff33 = false;
|
|
ff08 = false;
|
|
bc = ea;
|
|
ea = (ea * decayTable[s.patchRam.env_r]) >> 16;
|
|
// printf("returning from release phase\n");
|
|
goto h0590;
|
|
|
|
h0563:
|
|
// printf("attack phase\n");
|
|
ff08 = false;
|
|
ea += attackTable[s.patchRam.env_a];
|
|
if (ea & 0xc000) {
|
|
ea = 0x3fff;
|
|
ff33 = true;
|
|
ff08 = true;
|
|
}
|
|
|
|
h0590:
|
|
env = ea;
|
|
ff27 = ea;
|
|
|
|
// printf("%04x %d %d %d %d %d \n", ea, ff07, ff08, ff10, ff11, ff33);
|
|
}
|
|
|
|
void Synth::runLFO() {
|
|
// compute a loop's worth of LFO
|
|
|
|
uint16_t bc, ea;
|
|
|
|
// 074e
|
|
ea = ff4d; // lfo value
|
|
bc = lfoRateTable[patchRam.lfoRate];
|
|
|
|
// bit zero is low for rising slope, high for falling
|
|
if (!(ff4a & 0x01)) goto h078b;
|
|
|
|
// 075b DSUBNB EA, BC subtract BC from EA, skip next instruction if EA < BC
|
|
// 075d JRE 079a routine that handles flipping from down to up
|
|
ea -= bc;
|
|
if (ea < bc) goto h079a;
|
|
|
|
h075f:
|
|
ff4d = ea; // LFO output variable
|
|
|
|
// bit one seems to be used to represent negative values of LFO
|
|
if (!(ff4a & 0x02)) goto h07a2; // routine that adds on 0x2000 to ea
|
|
|
|
// 0765 LFO is negative (bit 1 is high) so invert the value of EA
|
|
// so that we have a positive-only LFO running from 0 to 0x3fff
|
|
bc = ea;
|
|
ea = 0x2000;
|
|
ea -= bc;
|
|
h076b:
|
|
bc = ea; // BC now contains an LFO range from 0 to 0x3fff, always positive
|
|
if (patchRam.switch2 & 0x01) { // LFO Manual?
|
|
bc = 0x3fff; // fixed maximum value
|
|
}
|
|
|
|
// 0771
|
|
bc = (bc * patchRam.pwmLfo) >> 7; // scale by PWM pot amount
|
|
|
|
// 077d
|
|
bc = 0x3fff - bc; // invert so pot = 0 gives 0x3fff
|
|
|
|
// test if squarewave is on or off - if it's off set PW to 0
|
|
if (!(patchRam.switch1 & 0x08)) bc = 0x0000; // square off
|
|
|
|
// final computed PWM value
|
|
ff4f = bc;
|
|
|
|
// 078a
|
|
goto h07a9;
|
|
|
|
h078b:
|
|
// BC contains rate, EA contains LFO value
|
|
ea += bc;
|
|
if (ea & 0xe000) { // if we've exceeded 0x1fff
|
|
ea = 0x1fff; // clamp
|
|
ff4a++; // increment the flags
|
|
}
|
|
goto h075f; // store in LFO output variable
|
|
|
|
h079a:
|
|
ea = 0; // output is close (enough) to zero, clamp
|
|
ff4a++; // increment the flags
|
|
goto h075f; // store in LFO output variable
|
|
|
|
h07a2: // LFO output is positive
|
|
ea += 0x2000; // add on 0x2000 to scale PWM to 0 - 0x3fff
|
|
goto h076b; // jump back to scale LFO amount
|
|
|
|
h07a9:
|
|
return;
|
|
} |