/* BarrVerb reverb plugin Copyright 2024 Gordon JC Pearce Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "barrverb.hpp" #include "rom.h" START_NAMESPACE_DISTRHO BarrVerb::BarrVerb() : Plugin(kParameterCount, 64, 0) { // one parameter, 64 programs, no states lowpass = new float[getBufferSize()]; ram = new int16_t[16384]; bzero(lowpass, sizeof(float) * getBufferSize()); bzero(ram, sizeof(int16_t) * 16384); /* // calculate SVF params // hardcoded values for now float fc = 5019; float F = fc / 48000; // assume 48kHz float w = 2 * tan(3.14159 * F); float a = w / 0.7845; // 1dB Chebyshev, 2-pole float b = w * w; // "corrected" SVF params, per Fons Adriaensen c1_1 = (a + b) / (1 + a / 2 + b / 4); c2_1 = b / (a + b); d0_1 = c1_1 * c2_1 / 4; fc = 9433; F = fc / 48000; // assume 48kHz w = 2 * tan(3.14159 * F); a = w / 3.5594; // 1dB Chebyshev, 2-pole b = w * w; c1_2 = (a + b) / (1 + a / 2 + b / 4); c2_2 = b / (a + b); d0_2 = c1_2 * c2_2 / 4;*/ // calculate SVF params // hardcoded values for now float fc = 10000; float F = fc / 48000; // assume 48kHz float w = 2 * tan(3.14159 * F); float a = w / 0.5412; // Butterworth 4-pole first stage float b = w * w; // "corrected" SVF params, per Fons Adriaensen c1_1 = (a + b) / (1 + a / 2 + b / 4); c2_1 = b / (a + b); d0_1 = c1_1 * c2_1 / 4; fc = 10000; F = fc / 48000; // assume 48kHz w = 2 * tan(3.14159 * F); a = w / 1.3065; // Butterworth 4-pole second stage b = w * w; c1_2 = (a + b) / (1 + a / 2 + b / 4); c2_2 = b / (a + b); d0_2 = c1_2 * c2_2 / 4; } // Initialisation functions void BarrVerb::initParameter(uint32_t index, Parameter ¶meter) { if (index == paramProgram) { parameter.hints = kParameterIsAutomatable | kParameterIsInteger; parameter.name = "Program"; parameter.symbol = "program"; parameter.ranges.def = 20.0f; parameter.ranges.min = 1.0f; parameter.ranges.max = 64.0f; } } void BarrVerb::setParameterValue(uint32_t index, float value) { if (index == paramProgram) { program = value; prog_offset = (((int)value-1) & 0x3f) << 7; } } float BarrVerb::getParameterValue(uint32_t index) const { if (index == paramProgram) { return program; } return 0; } void BarrVerb::initAudioPort(bool input, uint32_t index, AudioPort &port) { port.groupId = kPortGroupStereo; Plugin::initAudioPort(input, index, port); } void BarrVerb::initProgramName(uint32_t index, String &programName) { programName = prog_name[index & 0x3f].c_str(); } void BarrVerb::loadProgram(uint32_t index) { prog_offset = (index & 0x3f) << 7; program = index + 1; } // Processing functions void BarrVerb::activate() { // calculate filter coefficients printf("called activate()\n"); } void BarrVerb::deactivate() { // zero out the outputs, maybe printf("called deactivate()\n"); } void BarrVerb::run(const float **inputs, float **outputs, uint32_t frames) { // actual effects here float x; uint16_t opcode; for (uint32_t i = 0; i < frames; i++) { // smash to mono lowpass[i] = (inputs[0][i] + inputs[1][i]) / 2; // 10kHz lowpass filter, 2x oversampling x = lowpass[i] - in_z1 - in_z2; in_z2 += c2_1 * in_z1; in_z1 += c1_1 * x; x = (d0_1 * x + in_z2) - in_z12 - in_z22; in_z22 += c2_2 * in_z12; in_z12 += c1_2 * x; lowpass[i] = d0_2 * x + in_z22; } // now run the DSP for (uint32_t i=0; i < frames; i+=2) { // run the actual DSP engine for each sample for (uint8_t step = 0; step < 128; step++) { opcode = rom[prog_offset + step]; switch (opcode & 0xc000) { case 0x0000: ai = ram[ptr]; li = acc + (ai >> 1); break; case 0x4000: ai = ram[ptr]; li = (ai >> 1); break; case 0x8000: ai = acc; ram[ptr] = ai; li = acc + (ai >> 1); break; case 0xc000: ai = acc; ram[ptr] = -ai; li = -(ai >> 1); break; } // clamp if (ai > 2047) ai=2047; if (ai < -2047) ai=-2047; if (step == 0x00) { // load RAM from ADC ram[ptr] = (int)(lowpass[i] * 2048); } else if (step == 0x60) { // output right channel //ai=0; outputs[1][i] = (float)ai / 2048; outputs[1][i+1] = (float)ai / 2048; } else if (step == 0x70) { // output left channel //ai=0; outputs[0][i] = (float)ai / 2048; outputs[0][i+1] = (float)ai / 2048; } else { // everything else // ADC and DAC operations don't affect the accumulator // every other step ends with the accumulator latched from the Latch Input reg acc = li; } // 16kW of RAM ptr += opcode & 0x3fff; ptr &= 0x3fff; } } } // create the plugin Plugin *createPlugin() { return new BarrVerb(); } END_NAMESPACE_DISTRHO